

Automatic DJ Transitions with Differentiable Audio Effects and Generative Adversarial Networks

Bo-Yu Chen¹, Wei-Han Hsu¹, Wei-Hsiang Liao², Marco A. Martínez-Ramírez², Yuki Mitsufuji² and Yi-Hsuan Yang¹

¹ Academia Sinica, Taiwan, ² Sony Group Corporation, Japan

Track Selection

Track Ordering

Mixing

Auto DJ (3/3)

How to do Auto DJ Mixing ?

Paper ID / 5365 • IEEE ICASSP 2022 | Singapore

6

Rule based Approach

[1] Len Vande Veire and Tijl De Bie, "From raw audio to a seamless mix: Creating an automated DJ system for drum and bass," EURASIP Journal on Audio, Speech, and Music Processing, vol. 2018, no. 1, pp. 1–21, 2018
[2] Rachel M. Bittner et al., "Automatic playlist sequencing and transitions," in Proc. International Society for Music Information Retrieval Conference (ISMIR), 2017.

No golden rule in DJing Rule Based -----> Data Driven

Dataset

DJ mixes

Model

How to prepare data ?

Paper ID / 5365 • IEEE ICASSP 2022 | Singapore

10

Data Requirement

7,064 DJ mix sections totally

[1] "Livetracklist," https://www.livetracklist.com/

Paired tracks

Data Generation Pipeline

9,148 paired tracks totally

[1] Len Vande Veire and Tijl De Bie, "From raw audio to a seamless mix: Creating an automated DJ system for drum and bass,"
EURASIP Journal on Audio, Speech, and Music Processing, vol. 2018, no. 1, pp. 1–21, 2018.
[2] Dmitry Bogdanov et al., "The MTG-Jamendo dataset for automatic music tagging," in Proc. Machine Learning for Music Discovery Workshop, International Conference on Machine Learning (ICML), 2019.

How to model DJ transition ?

Paper ID / 5365 • IEEE ICASSP 2022 | Singapore

14

[1] Jesse Engel et al., "DDSP: Differentiable digital signal processing," in Proc. International Conference on Learning Representations (ICLR), 2020.

[2] Ian Goodfellow et al., "Generative adversarial nets," Proc. Advances in neural information processing systems, vol. 63, no. 11, pp. 139–144, 2014.

Transfer Learning

[1] Jesse Engel et al., "DDSP: Differentiable digital signal processing," in Proc. International Conference on Learning Representations (ICLR), 2020.

GAN (1/2)

[1] Ian Goodfellow et al., "Generative adversarial nets," Proc. Advances in neural information processing systems, vol. 63, no. 11, pp. 139–144, 2014.

Generator

[1] Ian Goodfellow et al., "Generative adversarial nets," Proc. Advances in neural information processing systems, vol. 63, no. 11, pp. 139–144, 2014.

 $PReLU1(\overrightarrow{v_t}, s_t, \delta_t) = \min(\max(0, \min(\max(0, \overrightarrow{v_t} - s_t), 1) * \delta_t), 1)$

[1] Andrew G Howard et al., "MobileNets: Efficient convolutional neural networks for mobile vision applications," arXiv preprint arXiv:1704.04861, 2017.

Differentiable Equalizer (1/2)

[1] Boris Kuznetsov, Julian D Parker, and Fabian Esqueda, "Differentiable iir filters for machine learning applications," in Proc. Int. Conf. Digital Audio Effects, 2020.

[2] Jesse Engel et al., "DDSP: Differentiable digital signal processing," in Proc. International Conference on Learning Representations (ICLR), 2020.

[3] Shahan Nercessian, "Neural parametric equalizer matching using differentiable biquads," in Proc. Int. Conf. Digital Audio Effects (eDAFx-20), 2020, pp. 265–272.

Differentiable Equalizer (2/2)

Time-Frequency Domain

 $H_{lpf}(\overrightarrow{v_f}, \theta_f) = 1 - PReLU1(\overrightarrow{v_f}, s_f, \delta_f)$

[1] Haohe Liu et al., "Channel-wise subband input for better voice and accompaniment separation on high resolution music," in Proc. Interspeech 2020, 2020, pp. 1241–1245.

Differentiable DJ Mixer

Model Architecture

[1] Christian J Steinmetz et al., "Automatic multitrack mixing with a differentiable mixing console of neural audio effects," in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, 2021.

Evaluation

GAN Our Approach

Rule

Human

Listening test results (1/2)

Most scores are lower than 3

Music style of the selected paired tracks is unacceptable to experienced subjects

Listening test results (2/2)

Overall, there is no significant difference among GAN, Linear and Rule.

Comments from experienced subjects

"

They make good use of the filter in the first track and fit with the second track, which takes on an altogether new aspect.

66

This DJ seems to make the transition by vinyl records instead of a modern CDJ or DDJ controller. It sounds like a human playing a vinyl record live, making it organic.

SONY

Contributions

Paper ID / 5365 • IEEE ICASSP 2022 | Singapore

38

Contributions

- Developed a data generation pipeline to create training data.
- 2. Propose efficient differentiable DJ mixer in timefrequency domain.
- Utilize generative adversarial network and differentiable
 DJ mixer to learn how to generate DJ transition.
- 4. Conduct a subjective listening test to show that our approach achieve competitive results compared with a number of baselines.

https://paulyuchen.com/djtransgan-icassp2022
https://github.com/ChenPaulYu/DJtransGAN

Thanks for your Attention

bernie40916@gmail.com

@Chen_Paul_u

