VI. Brief Introduction for Acoustics

[参考資料]

- ●王小川,"語音訊號處理",第三版,全華出版,台北,民國98年。
- T. F. Quatieri, *Discrete-Time Speech Signal Processing: Principle and Practice*, Pearson Education Taiwan, Taipei, 2005.
- L. R. Rabiner and R. W. Schafer, *Digital Processing of Speech Signals*, Prentice-Hall, 1978.
- P. Filippi, *Acoustics : Basic Physics, Theory, and Methods*, Academic Press, San Diego, 1999.

● 6-A 聲音的相關常識

人耳可以辨識頻率: 20Hz~20000Hz

說話:150~2000Hz

電話系統頻域:小於 4000Hz

電腦音效卡取樣頻率:44100Hz (最新技術可達192K)

(一般用 22050Hz, 11025Hz 即可)

> 20000Hz: 超音波 (ultrasound)

< 20Hz: 次聲波 (infrasound)

波長較長->傳播距離較遠,但容易散射

波長較短->衰減較快,但傳播方向較接近直線

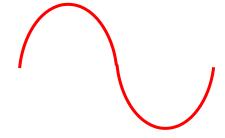
- 一般聲音檔格式:
 - (1) 取樣頻率 22050Hz
 - (2) 單聲道或雙聲道
 - (3) 每筆資料用8個bit來表示
- 電腦中沒有經過任何壓縮的聲音檔: *.wav

Q: What is the data size of a song without compression?

• 數位電話取樣頻率:8000Hz

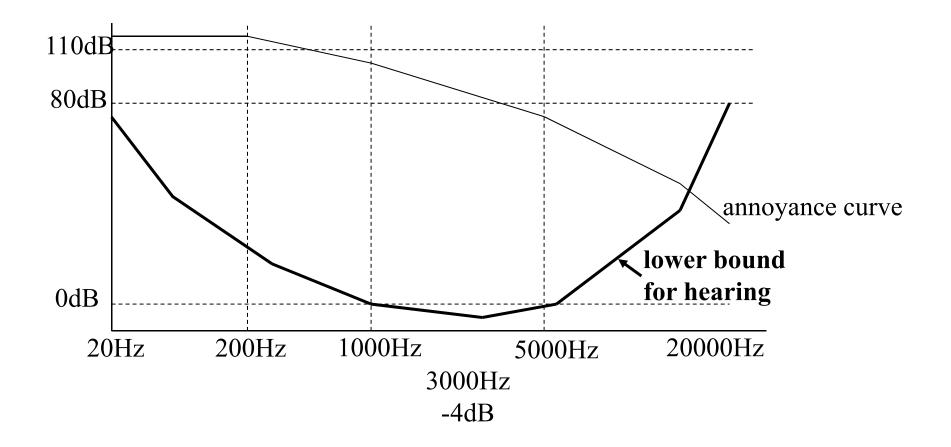
聲音在空氣中傳播速度: 每秒 340 公尺 (15°C 時) 所以,人類對3000Hz 左右頻率的聲音最敏感

(一般人, 耳翼到鼓膜之間的距離: 2.7公分)



附: (1) 每增加 1°C, 聲音的速度增加 0.6 m/sec

(2) 聲音在水中的傳播速度是 1500 m/sec 在鋁棒中的傳播速度是 5000 m/sec



• dB: 分貝 10log₁₀(P/C), 其中P為音強(正比於振福的平方); C為0dB 時的音強

每增加10dB,音強增加10倍,振幅增加10^{0.5}倍;每增加3dB,音強增加2倍,振幅增加2^{0.5}倍; 所幸,內耳的振動不會正比於聲壓

• 人對於頻率的分辨能力,是由頻率的「比」決定

對人類而言,300Hz和400Hz之間的差別,與3000Hz和4000Hz之間的差別是相同的

• 6-B Music Signal

電子琴 Do 的頻率: 低音 Do: 131.32 Hz

中音 Do: 261.63 Hz

高音 Do: 523.26 Hz

更高音 Do: 1046.52 Hz,

音樂每增加八度音,頻率變為2倍

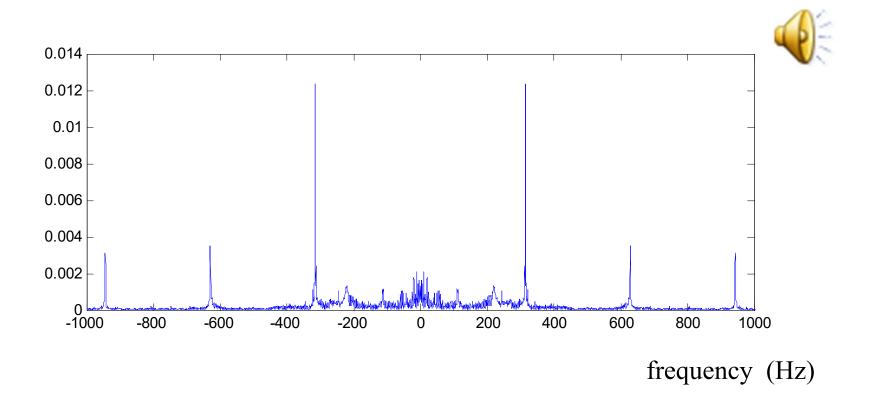
每一音階有12個半音

增加一個半音,頻率增加 21/12 倍 (1.0595 倍)

	Do	升Do	Re	升Re	Mi	Fa	升Fa	So	升So	La	升La	Si
Hz	262	277	294	311	330	349	370	392	415	440	466	494

音樂通常會出現「和弦」(chord)的現象

除了基頻 f_0 Hz 之外,也會出現 $2f_0$ Hz, $3f_0$ Hz, $4f_0$ Hz, 的頻率



為什麼會產生和弦?

以共振的觀點:

聲音信號是一個 periodic signal,但是不一定是 sinusoid

○ 6-C 語音處理的工作

- (1) 語音編碼 (Speech Coding)
- (2) 語音合成 (Speech Synthesis)
- (3) 語音增強 (Speech Enhancement) 前三項目前基本上已經很成功
- (4) 語音辨認 (Speech Recognition)
 音素→音節→詞→句→整段話
 目前已有很高的辨識率
- (5) 說話人辨認 (Speaker Recognition)
- (6) 其他:語意,語言,情緒

⊙ 6-D 語音的辨認

音素→音節→詞→句→整段話 音素:相當於一個音標

- (1) Spectrum Analysis
 Time-Frequency Analysis
- (2) Cepstrum
- (3) Correlation for Words

⊙ 6-E 子音和母音

クタロロカムろめ《万厂リくT 出名戸ロアちム Y でさせ あて 幺 ヌ ワ り オ ム ル ー メ 山

母音: Y で さ せ 男 て 幺 ヌ 写 与 尤 ム ル ー メ 山

單母音: a, e, i, o, u Y で さ せ ル ー メ 山

雙母音: 历入幺又

母音+濁音: ラ与 尤 ム

子音: クタロロカムろめ《万厂リく丁里彳戸囚卫ちム

	5	タ	П	ヒ	分	な	3	为	((万	厂	4	<	T
漢語拚音	b	p	m	f	d	t	n	1	g	k	h	j	q	X
通用拚音	b	p	m	f	d	t	n	1	g	k	h	j	С	S

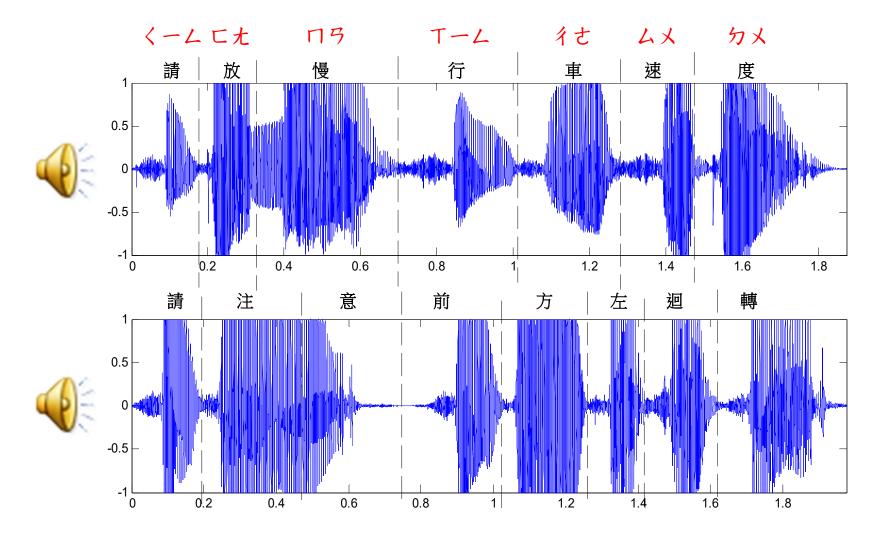
	里	1	7		P	ち	4	Y	ट	さ	せ	历	7	幺
漢語拚音	zh	ch	sh	r	Z	С	S	a	O	e	e	ai	ei	ao
通用拚音	jh	ch	sh	r	Z	С	S	a	O	e	e	ai	ei	ao

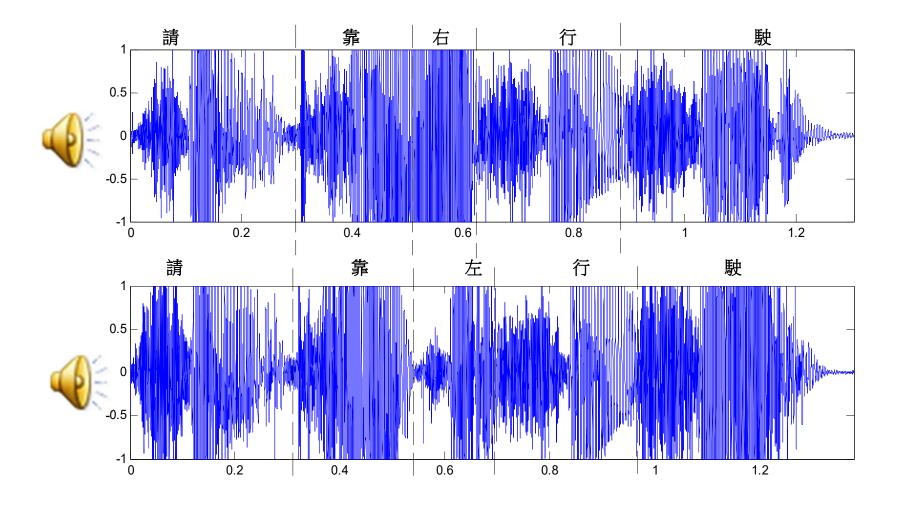
	ヌ	9	4	尤	7	儿	_	メ	Ц
漢語拚音	ou	an	en	ang	eng	er	i, y	u, w	yu, iu
通用拚音	ou	an	en	ang	eng	er	i, y	u, w	yu, iu

母音: 依唇型而定

子音: 在口腔,鼻腔中某些部位將氣流暫時堵住後放開

子音的能量小,頻率偏高,時間較短,出現在母音前 母音的能量大,頻率偏低,時間較長,出現在子音後或獨立出現





 $x[n] = e_p[n] * g[n] * h[n] * r[n], * means the convolution$ $X(z) = E_p(z) G(z) H(z) R(z)$

r[n]:嘴唇模型, h[n]:口腔模型, g[n] :聲帶模型

 $e_p[n]$:輸入(假設為週期脈衝)

音量和 $e_p[n]$, g[n] 有關 頻率和 g[n] 有關 子音和 h[n], r[n] 有關 母音和 r[n] 有關 • 分析一個聲音信號的頻譜:

用 Windowed Fourier Transform

或稱作 Short-Time Fourier Transform

Fourier transform

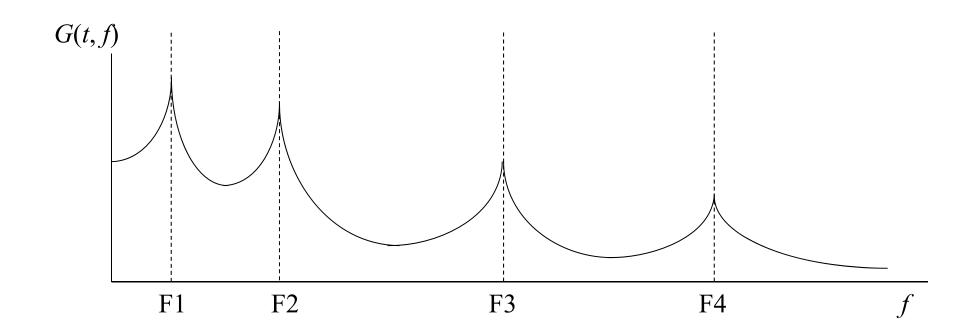
$$G(f) = \int_{-\infty}^{\infty} g(t) e^{-j2\pi f t} dt$$

Windowed Fourier transform

$$G(f) = \int_{t_0-B}^{t_0+B} g(t)e^{-j2\pi f t}dt$$
 強調 $t = t_0$ 附近的區域

或
$$G(t,f) = \int_{-\infty}^{\infty} w(t-\tau)g(\tau)e^{-j2\pi f\tau}d\tau$$

典型的聲音頻譜(不考慮倍頻):



頻譜上,大部分的地方都不等於0。 出現幾個 peaks 值

可以依據 peaks 的位置來辨別母音

母音 peaks 處的頻率 (Hz) (不考慮倍頻):

		男聲		女聲					
	F1	F2	F3	F1	F2	F3			
Υ	900	1200	2900	1100	1350	3100			
Z	560	800	3000	730	1100	3200			
さ	560	1090	3000	790	1250	3100			
せ	500	2100	3100	600	2400	3300			
_	310	2300	3300	360	3000	3500			
人	370	540	3400	460	820	3700			
Ц	300	2100	3400	350	2600	3200			
儿	580	1500	3200	760	1700	3200			

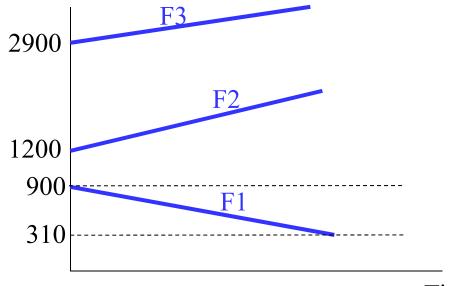
原則上: (1) 嘴唇的大小,決定F1

(2) 舌面的高低, 決定 F2 - F1

[Ref] 王小川,"語音訊號處理",第三版,全華出版,台北,民國98年

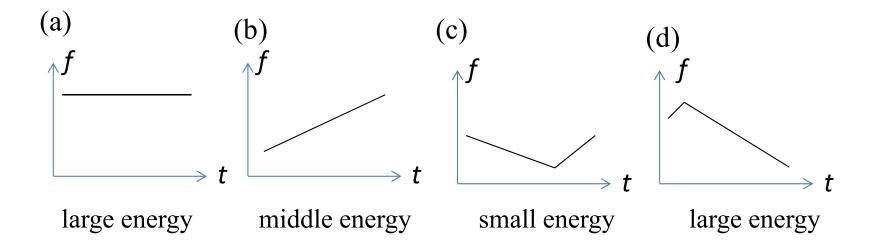
頻譜隨時間而改變,一開使始像第一個母音,後變得像另一個母音

历 的頻譜的 peaks位置



Time

O 6-F Tone Analysis



Typical relations between time and the instantaneous frequencies for (a) the 1st tone, (b) the 2nd tone, (c) the 3rd tone, and (d) the 4th tone in Chinese.

X. X. Chen, C. N. Cai, P. Guo, and Y. Sun, "A hidden Markov model applied to Chinese four-tone recognition," *ICASSP*, vol. 12, pp. 797-800, 1987.

⊙ 6-G 語意學的角色

以「語意學」或「機率」來補足語音辨識的不足

• 當前主流的語音辨識技術:

Mel-Frequency Cepstrum + Tone Analysis + 語意分析 + Machine Learning

附錄八:線性代數觀念補充

- (1) x 和 y 兩個向量的內積可表示成 $\langle x|y\rangle$
- (2) 兩個互相正交(orthogonal)或垂直(perpendicular)的向量,其內積為0。可表示成:< $x \mid y >= 0$ 或 < x,y >= 0
- (3) 令 S 為內積空間V的一組正交集合(set)且由非零向量構成,

其中
$$\mathbf{x} = \sum_{\mathbf{y} \in S} a_{\mathbf{y}} \mathbf{y}, \quad a_{\mathbf{y}} = \frac{\langle \mathbf{x} | \mathbf{y} \rangle}{\langle \mathbf{y} | \mathbf{y} \rangle}$$

如果 S 是由一組正規集合(orthonormal set)構成,那麼 $a_y =< \mathbf{x} | \mathbf{y} >$

- (4) Gram-Schmidt algorithm: 對於內積空間V的任意一組基底 < x₁,x₂,...,x_n >
- ,我們可以透過這演算法找到一組正交基底 $< y_1, y_2, ..., y_n > y_n > y_n > y_n$

$$\mathbf{y_j} = \mathbf{x_j} - \sum_{i=1}^{j-1} \frac{\langle \mathbf{x_j} | \mathbf{y_i} \rangle}{\langle \mathbf{y_i} | \mathbf{y_i} \rangle} \mathbf{y_i}$$
 for each $j = 2,...,n$

幾何意義:把 X_j 在 $y_1, y_2, ..., y_{j-1}$ 上面的分向量全都從向量 X_j 身上扣掉之後,剩下的向量 y_i 自然就會跟 $y_1, y_2, ..., y_{j-1}$ 垂直。

(5) Solving $\mathbf{A}\mathbf{x} = \mathbf{b}$ but $size(\mathbf{A}) = m \times n$ and $\mathbf{b} \in F^m$, m > n

Interpolation Theorem (插值定理)

- 1. For any inner-product function of F^m , there exists a vector \mathbf{z} that minimizes $\|\mathbf{A}\mathbf{z} \mathbf{b}\|$ where $\mathbf{z} \in F^n$
- 2. If rank(\mathbf{A}) = n, then $\mathbf{z} = (\mathbf{A}^H \mathbf{A})^{-1} \mathbf{A}^H \mathbf{b}$ is the unique minimizer of $\|\mathbf{A}\mathbf{z} \mathbf{b}\|$

附錄九:PCA and SVD

PCA (principal component analysis) 是資料分析和影像處理當中常用到的數學方法,用來分析資料的「主要成分」或是影像中物體的「主軸」。

它其實和各位同學在高中和大一線代所學的回歸線 (regressive line) 很類似。回歸線是用一條一維 (one-dimensional) 的直線來近似二維 (two-dimensional) 的資料,而 PCA 則是用 M-dimensional data 來近似 N-dimensional data ,其中 M 小於等於 N

在講解PCA 之前,先介紹什麼是 SVD (singular value decomposition)

我們在大一的時候,都已經學到該如何對於 $N \times N$ 的矩陣做 eigenvector -eigenvalue decomposition

那麼.....

當一個矩陣的 size 為 $M \times N$,且 $M \rightarrow N$ 不相等時,我們該如何對它來做 eigenvector-eigenvalue decomposition?

SVD 的流程:

假設 A 是一個 $M \times N$ 的矩陣。

(Step 1) 計算

$$\mathbf{B} = \mathbf{A}^{\mathbf{H}} \mathbf{A} \qquad \mathbf{C} = \mathbf{A} \mathbf{A}^{\mathbf{H}}$$

注意, \mathbf{B} 是 $N \times N$ 的矩陣,而 \mathbf{C} 是 $M \times M$ 的矩陣。上標 \mathbf{H} 代表 Hermitian matrix,相當於做共軛轉置。

(Step 2) 接著, 對 B 和 C 做 eigenvector-eigenvalue decomposition

$$\mathbf{B} = \mathbf{V}\mathbf{D}\mathbf{V}^{-1} \qquad \qquad \mathbf{C} = \mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^{-1}$$

其中 V 的每一個 column 是 B 的 eigenvector (with normalization), U 的 每一個 column 是 C 的 eigenvector (with normalization), Λ 和 D 都是 對角矩陣, Λ 和 D 對角線上的 entries 是 B 和 C 的 eigenvalues。並假設 eigenvectors 根據 eigenvalues 的大小排序 (由大到小)

Note: 值得注意的是,由於 $\mathbf{B} = \mathbf{B}^{H}$ 且 $\mathbf{C} = \mathbf{C}^{H}$,所以 \mathbf{B} 和 \mathbf{C} 的 eigenvectors 皆各自形成一個 orthogonal set。經過適當的 normalization 使得 \mathbf{U} 和 \mathbf{V} 的 column 自己和自己的內積為 $\mathbf{1}$ 之後, $\mathbf{U}^{-1} = \mathbf{U}^{H}$ 和 $\mathbf{V}^{-1} = \mathbf{V}^{H}$ 將滿足。因此, \mathbf{B} 和 \mathbf{C} 可以表示成

$$\mathbf{B} = \mathbf{V}\mathbf{D}\mathbf{V}^{\mathbf{H}} \qquad \mathbf{C} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{\mathbf{H}}$$

注意,V和U是unitary matrix

(Step 3) 計算

$$S_1 = U^H A V$$

 S_1 是一個 $M \times N$ 的矩陣,只有在 $S_1[n, n]$ $(n = 1, 2, ..., \min(M, N))$ 的地方不為 0

(Step 4) $S = |S_1|$ 取絕對值

若 $S_1[n,n] < 0$,改變 U 第 n 個 column 的正負號

即完成 SVD

Note: Since V is bound to be real,

$$A = USV^{H}$$

$$A = USV^{T}$$

A也可以表示為

$$\mathbf{A} = \lambda_1 \mathbf{u}_1 \mathbf{v}_1^{\mathsf{T}} + \lambda_2 \mathbf{u}_2 \mathbf{v}_2^{\mathsf{T}} + \dots + \lambda_k \mathbf{u}_k \mathbf{v}_k^{\mathsf{T}}$$

其中
$$\lambda_n = S[n, n], k = \min(M, N)$$

註: Matlab 有內建的 svd 指令可以計算 SVD

從 SVD 到 PCA (principal component analysis, 主成份分析)

$$\mathbf{A} = \lambda_1 \mathbf{u}_1 \mathbf{v}_1^{\mathrm{T}} + \lambda_2 \mathbf{u}_2 \mathbf{v}_2^{\mathrm{T}} + \dots + \lambda_k \mathbf{u}_k \mathbf{v}_k^{\mathrm{T}}$$
 $k = \min(M, N)$

若
$$\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \ldots \ldots \ge \lambda_k$$

$$A_{\mathbf{u}_{1}}\mathbf{v}_{1}^{\mathbf{T}}$$
 是 A 矩陣的最主要的成份

$$\lambda_2 \mathbf{u}_2 \mathbf{v}_2^{\mathrm{T}}$$
 是 A 矩陣的第二主要的成份

:

 $\lambda_k \mathbf{u}_k \mathbf{v}_k^{\mathrm{T}}$ 是 A 矩陣的最不重要的成份

若為了壓縮或是去除雜訊的考量,可以選擇 h < k,使得 A 可以近似成

$$\mathbf{A} \cong \lambda_1 \mathbf{u_1} \mathbf{v_1}^{\mathrm{T}} + \lambda_2 \mathbf{u_2} \mathbf{v_2}^{\mathrm{T}} + \dots + \lambda_h \mathbf{u_h} \mathbf{v_h}^{\mathrm{T}}$$

PCA 的流程

假設現在有M筆資料,每一筆資料為N dimension

$$\begin{aligned} \mathbf{g_1} &= [f_{1,1} \ f_{1,2}, \ \dots, f_{1,N}] \\ \mathbf{g_2} &= [f_{2,1} \ f_{2,2}, \ \dots, f_{2,N}] \\ &\vdots \\ \mathbf{g_M} &= [f_{M,1} \ f_{M,2}, \ \dots, f_{M,N}] \end{aligned}$$

(Step 1) 扣掉平均值,形成新的 data

$$\mathbf{d_m} = \begin{bmatrix} e_{m,1} & e_{m,2} & \cdots & e_{m,N} \end{bmatrix} \qquad m = 1, 2, \dots, M$$

其中 $e_{m,n} = f_{m,n} - \tilde{f}_n, \qquad \tilde{f}_n = \frac{1}{M} \sum_{m=1}^M f_{m,n}$

(Step 2) 形成 M x N 的矩陣 A

A 的第
$$m$$
 個 row 為 d_m , $m = 1, 2, ..., M$

(Step 3) 對 A 做 SVD 分解

$$\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathbf{H}}$$

$$= \lambda_{1}\mathbf{u}_{1}\mathbf{v}_{1}^{\mathbf{T}} + \lambda_{2}\mathbf{u}_{2}\mathbf{v}_{2}^{\mathbf{T}} + \dots + \lambda_{k}\mathbf{u}_{k}\mathbf{v}_{k}^{\mathbf{T}} \qquad k = \min(M, N)$$

$$\lambda_{1} \ge \lambda_{2} \ge \lambda_{3} \ge \dots \ge \lambda_{k}$$

(Step 4) 將A近似成

$$\mathbf{A} \cong \lambda_1 \mathbf{u_1} \mathbf{v_1}^{\mathsf{T}} + \lambda_2 \mathbf{u_2} \mathbf{v_2}^{\mathsf{T}} + \dots + \lambda_h \mathbf{u_h} \mathbf{v_h}^{\mathsf{T}}$$

則每一筆資料可以近似為

$$g_{\mathbf{m}} \cong \lambda_1 u_1[m] \mathbf{v}_1^{\mathbf{T}} + \lambda_2 u_2[m] \mathbf{v}_2^{\mathbf{T}} + \dots + \lambda_h u_h[m] \mathbf{v}_{\mathbf{h}}^{\mathbf{T}} + \begin{bmatrix} \tilde{f}_1 & \tilde{f}_2 & \dots & \tilde{f}_N \end{bmatrix}$$

除了平均值 $\left[\tilde{f}_1 \quad \tilde{f}_2 \quad \cdots \quad \tilde{f}_N \right]$ 之外

 $\mathbf{v_1}^{\mathsf{T}}$ 是資料的最主要成分, $\mathbf{v_2}^{\mathsf{T}}$ 是資料的次主要成分, $\mathbf{v_3}^{\mathsf{T}}$ 是資料的第三主要成分,以此類推

Example of PCA

3. 在處理二維數據時,有種方法是將數據垂直投影到某一直線,並以該直線為數線,進而 了解投影點所成一維數據的變異。下圖的一組二維數據,試問投影到哪一選項的直線,

所得之一維投影數據的變異數會是最小?

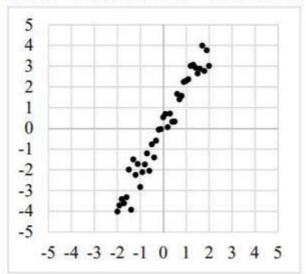
(1)
$$y = 2x$$

(2)
$$y = -2x$$

(3)
$$y = -x$$

(4)
$$y = \frac{x}{2}$$

(5)
$$y = -\frac{x}{2}$$



From 2022 大考中心官網

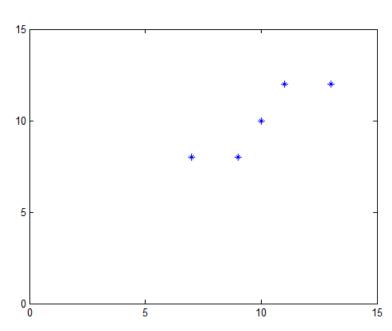
Example of PCA

假設在一個二維的空間中,有5個點,座標分別是

(7,8), (9,8), (10,10), (11,12), (13,12)

$$M = 5, N = 2$$

試求這五個點的 PCA (即回歸線)



(Step 1) 將這五個座標點減去平均值 (10, 10)

$$(-3, -2), (-1, -2), (0, 0), (1, 2), (3, 2)$$

(Step 2) 形成 5x2 的 matrix

$$\mathbf{A} = \begin{bmatrix} -1 & -2 \\ 0 & 0 \\ 1 & 2 \\ 3 & 2 \end{bmatrix}$$

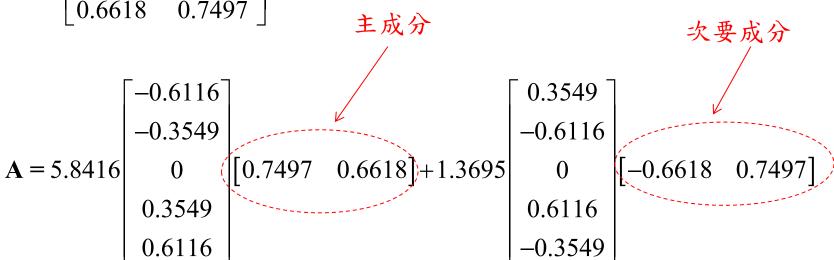
(Step 3) 計算 SVD

$$A = USV^H$$

$$\mathbf{U} = \begin{bmatrix} -0.6116 & 0.3549 & 0 & 0.0393 & 0.7060 \\ -0.3549 & -0.6116 & 0 & 0.7060 & -0.0393 \\ 0 & 0 & 1 & 0 & 0 \\ 0.3549 & 0.6116 & 0 & 0.7060 & -0.0393 \\ 0.6116 & -0.3549 & 0 & 0.0393 & 0.7060 \end{bmatrix}$$

$$\mathbf{S} = \begin{bmatrix} 5.8416 & 0 \\ 0 & 1.3695 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\mathbf{V} = \begin{bmatrix} 0.7497 & -0.6618 \\ 0.6618 & 0.7497 \end{bmatrix}$$



(Step 4) 得到主成分 [0.7497 0.6618]

這五個座標點可以近似成

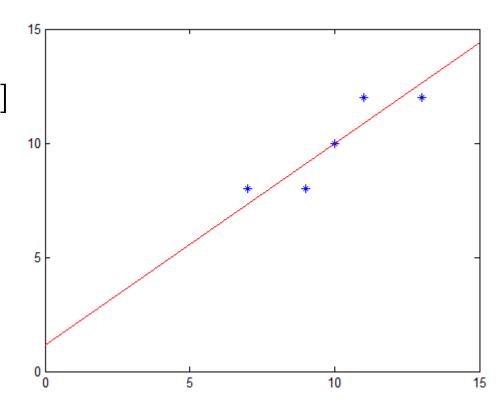
$$5.8416 \cdot u_m [0.7497 \quad 0.6618] + [10 \quad 10] \qquad m = 1, 2, ..., 5$$

 $u_1 = -0.6116, \quad u_2 = -0.3549, \quad u_3 = 0, \quad u_4 = 0.3549, \quad u_5 = 0.6116$

回歸線

$$[10 \ 10] + c[0.7497 \ 0.6618]$$

$$c \in (-\infty, \infty)$$



Using the PCA method can obtain the best approximation result.

(Proof):

Without the loss of generalization, we discuss the problem in the 2D case (i.e., N = 2). Suppose that the location of the M points are

$$(x_1, y_1), (x_2, y_2), \ldots, (x_M, y_M)$$

We want to find a line passing through the origin such that the projection of (x_1, y_1) , (x_2, y_2) ,, (x_M, y_M) on the line has the maximal sum of the square norm. That is, to find a unit vector

$$\mathbf{e} = (e_1, e_2)$$
 where $\|\mathbf{e}\| = 1$ (The line passing through the origin is $\alpha \mathbf{e}$.) (1)

such that

$$\left\| \langle (x_1, y_1), \mathbf{e} \rangle \mathbf{e} \right\|^2 + \left\| \langle (x_2, y_2), \mathbf{e} \rangle \mathbf{e} \right\|^2 + \dots + \left\| \langle (x_M, y_M), \mathbf{e} \rangle \mathbf{e} \right\|^2$$
(2)

is maximal. Note that

$$\|\langle (x_1, y_1), \mathbf{e} \rangle \mathbf{e} \|^2 + \|\langle (x_2, y_2), \mathbf{e} \rangle \mathbf{e} \|^2 + \dots + \|\langle (x_M, y_M), \mathbf{e} \rangle \mathbf{e} \|^2$$

$$= (\langle (x_1, y_1), \mathbf{e} \rangle)^2 + (\langle (x_2, y_2), \mathbf{e} \rangle)^2 + \dots + (\langle (x_M, y_M), \mathbf{e} \rangle)^2$$

$$(3)$$

Suppose that for the matrix

$$\mathbf{A} = \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \\ \vdots & \vdots \\ x_M & y_M \end{bmatrix}$$

we have performed the SVD for A and decompose it into

$$\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^{T}$$

$$\mathbf{U} = \begin{bmatrix} \mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{M} \end{bmatrix} \qquad \mathbf{V} = \begin{bmatrix} \mathbf{v}_{1} & \mathbf{v}_{2} \end{bmatrix} \qquad \mathbf{S} = \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \\ \vdots & \vdots \\ 0 & 0 \end{bmatrix}$$

$$\mathbf{A} = \lambda_{1}\mathbf{u}_{1}\mathbf{v}_{1}^{T} + \lambda_{2}\mathbf{u}_{2}\mathbf{v}_{2}^{T} \qquad (4)$$

If
$$\mathbf{v_1} = \begin{bmatrix} v_{1,1} \\ v_{1,2} \end{bmatrix}$$
, $\mathbf{v_2} = \begin{bmatrix} v_{2,1} \\ v_{2,2} \end{bmatrix}$ then $\mathbf{v_1}$ and $\mathbf{v_2}$ are orthonormal $\mathbf{v_1}^T \mathbf{v_2} = \mathbf{v_2}^T \mathbf{v_1} = 0$ $\mathbf{v_1}^T \mathbf{v_1} = \mathbf{v_2}^T \mathbf{v_2} = 1$

Therefore,

$$\mathbf{A}\mathbf{v}_{1} = \lambda_{1}\mathbf{u}_{1}\mathbf{v}_{1}^{\mathbf{H}}\mathbf{v}_{1} + \lambda_{2}\mathbf{u}_{2}\mathbf{v}_{2}^{\mathbf{H}}\mathbf{v}_{1} = \lambda_{1}\mathbf{u}_{1} \qquad \mathbf{A}\mathbf{v}_{2} = \lambda_{1}\mathbf{u}_{2}$$
 (5)

Since v_1 and v_2 are orthonormal, any two-entry vector \mathbf{e} can be expressed as

$$\mathbf{e} = c_1 \mathbf{v}_1^T + c_2 \mathbf{v}_2^T$$
 where $c_1^2 + c_2^2 = 1$

Therefore, from (3),

$$\|\langle (x_1, y_1), \mathbf{e} \rangle \mathbf{e} \|^2 + \|\langle (x_2, y_2), \mathbf{e} \rangle \mathbf{e} \|^2 + \dots + \|\langle (x_M, y_M), \mathbf{e} \rangle \mathbf{e} \|^2$$

$$= \left(\langle (x_1, y_1), c_1 \mathbf{v}_1^T + c_2 \mathbf{v}_2^T \rangle \right)^2 + \left(\langle (x_2, y_2), c_1 \mathbf{v}_1^T + c_2 \mathbf{v}_2^T \rangle \right)^2 + \dots + \left(\langle (x_M, y_M), c_1 \mathbf{v}_1^T + c_2 \mathbf{v}_2^T \rangle \right)^2$$

$$(6)$$

Moreover, from (5),

$$\left(\left\langle \left(x_{m}, y_{m}\right), c_{1} \mathbf{v}_{1}^{T} + c_{2} \mathbf{v}_{2}^{T}\right\rangle\right)^{2} = \left(\lambda_{1} c_{1} u_{1,m} + \lambda_{2} c_{2} u_{2,m}\right)^{2} \tag{7}$$

where $u_{1,m}$ and $u_{2,m}$ are the m^{th} entries of $\mathbf{u_1}$ and $\mathbf{u_2}$, respectively. Therefore,

$$\|\langle (x_1, y_1), \mathbf{e} \rangle \mathbf{e} \|^2 + \|\langle (x_2, y_2), \mathbf{e} \rangle \mathbf{e} \|^2 + \dots + \|\langle (x_M, y_M), \mathbf{e} \rangle \mathbf{e} \|^2$$

$$= \sum_{m=1}^{M} (c_1 \lambda_1 u_{1,m} + c_2 \lambda_2 u_{2,m})^2 = c_1^2 \lambda_1^2 \sum_{m=1}^{M} u_{1,m}^2 + c_2^2 \lambda_2^2 \sum_{m=1}^{M} u_{2,m}^2 + 2c_1 \lambda_1 c_2 \lambda_2 \sum_{m=1}^{M} u_{1,m} u_{2,m}^2$$

Since $\mathbf{u_1}$ and $\mathbf{u_2}$ are orthonormal,

$$\sum_{m=1}^{M} u_{1,m}^2 = \sum_{m=1}^{M} u_{2,m}^2 = 1, \quad \sum_{m=1}^{M} u_{1,m} u_{2,m} = 0$$

we have

$$\left\| \langle (x_1, y_1), \mathbf{e} \rangle \mathbf{e} \right\|^2 + \left\| \langle (x_2, y_2), \mathbf{e} \rangle \mathbf{e} \right\|^2 + \dots + \left\| \langle (x_M, y_M), \mathbf{e} \rangle \mathbf{e} \right\|^2 = c_1^2 \lambda_1^2 + c_2^2 \lambda_2^2$$

Since $c_1^2 + c_2^2 = 1$ and $\lambda_1 > \lambda_2$, the best way to assign c_1 and c_2 is

$$c_1 = 1, c_2 = 0$$

That is, we can choose

$$\mathbf{e} = \mathbf{v}_1^T$$

and the projection of (x_m, y_m) on **e** is $\lambda_1 u_{1,m} \mathbf{v_1}^T$

$$\mathbf{A} = \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \\ \vdots & \vdots \\ x_M & y_M \end{bmatrix} \cong \begin{bmatrix} \lambda_1 u_{1,1} \mathbf{v}_1^T \\ \lambda_1 u_{1,2} \mathbf{v}_1^T \\ \vdots \\ \lambda_1 u_{1,M} \mathbf{v}_1^T \end{bmatrix} = \lambda_1 \mathbf{u}_1 \mathbf{v}_1^T$$