Homework 1 (Due: April 7th)

(1) Design a Mini-max **highpass** FIR filter such that

(40 scores)

- ① Filter length = 21, ② Sampling frequency $f_s = 5000$ Hz,
- 3 Pass Band 1100~2500Hz 4 Transition band: 900~1100 Hz,
- ⑤ Weighting function: W(F) = 1 for passband, W(F) = 0.5 for stop band.
- © Set $\Delta = 0.0001$ in Step 5.

※ Matlab program should be E-mailed to displab531@gmail.com E-mail 主旨上註明學號

紙本上要有

(a) the Matlab program,

- (b) the frequency response,
- (c) the impulse response h[n], and (d) the maximal error for each iteration.

- (2) (a) What are the two most important applications of the Fourier transform? (b) From the view point of implementation, what are the disadvantages of the discrete Fourier transform? (15 scores)
- (3) Suppose that x[n] = y(0.0002n) and the length of x[n] is 25000 and X[m] is the FFT of x[n]. Find m_1 and m_2 such that $X[m_1]$ and $X[m_2]$ correspond to the 300Hz and -100Hz components of y(t), respectively. (10 scores)
- (4) Why ① the <u>transition band</u> and ② the <u>weighting function</u> are important in Minimax FIR digital filter design? (10 scores)
- (5) Estimate the length of the digital filter if both the passband ripple and the stopband ripple are smaller than 0.02, the sampling interval $\Delta_t = 0.0001$, and the transition band is from 2000Hz to 2200Hz. (10 scores)
- (6) Make a comparison among the methods of MSE, Minimax, and frequency sampling for FIR filter design and show their advantages and disadvantages.

 (15 scores)