5. Sampling and Discrete Fourier Transform

Section 5.1 Sampling and Reconstruction

Section 5.2 Discrete Fourier Transform

[1] R. N. Bracewell, The Fourier Transform and Its Applications, 3rd ed., McGraw Hill, Boston, 2000.

[2] A. V. Oppenheim and R. W. Schafer, *Discrete-Time Signal Processing*, London: Prentice-Hall, 3rd ed., 2010.

Sampling and Discrete Fourier Transform

5.1 Sampling

5.1.1 Impulse Train

Impulse Train

$$p(x) = \sum_{n} \delta(x-n) = \dots + \delta(x+1) + \delta(x) + \delta(x-1) + \delta(x-2) + \dots$$

It is also called the comb function.

Signal sampling can be express in terms of the impulse train

$$g(x) \xrightarrow{sampling} g_{s}(x) = g(x) \sum_{n} \delta(x - n\Delta_{x})$$

$$= \sum_{n} g_{n} \delta(x - n\Delta_{x})$$
where $g_{n} = g(n\Delta_{x})$
Since
$$\sum_{n} \delta(x - n\Delta_{x}) = \frac{1}{\Delta_{x}} \sum_{n} \delta\left(\frac{x}{\Delta_{x}} - n\right) = \frac{1}{\Delta_{x}} p\left(\frac{x}{\Delta_{x}}\right)$$

$$page 349(4)$$

the sampled signal $g_s(x)$ can be expressed in terms of

$$g_{s}(x) = \frac{1}{\Delta_{x}}g(x)p\left(\frac{x}{\Delta_{x}}\right)$$

[**Theorem 5.1.1**] The impulse train is also an eigenfunction of the Fourier transform, i.e.,

$$P(f) = \Im\{p(x)\} = \sum_{n} \delta(f-n)$$

(Proof): Note that the impulse train is a periodic function

$$p(x) = p(x+1)$$

Therefore, it can be expanded by the Fourier series (page 327) of the complex form with T = 1

$$p(x) = \sum_{n} c_{n} \exp(j2\pi nx)$$

where
$$c_{n} = \frac{1}{1} \int_{-1/2}^{1/2} p(x) \exp(-j2\pi nx) dx = \int_{-1/2}^{1/2} \delta(x) \exp(-j2\pi nx) dx = 1$$

$$conjugate (page 348(2))$$

$$c=0$$

Therefore,

$$p(x) = \sum_{n} \exp(j2\pi nx)$$
$$\mathcal{F}[p(x)] = \sum_{n} \mathcal{F}[\exp(j2\pi nx)]$$
$$= \sum_{n} \delta(f-n) = p(f)$$

$$\Im\left\{\sum_{n}\delta(x-n)\right\} = \sum_{n}\delta(f-n)$$

Varying the interval of the impulse train

$$\sum_{n} \delta(x - n\Delta_{x}) = \frac{1}{\Delta_{x}} \sum_{n} \delta\left(\frac{x}{\Delta_{x}} - n\right) = \frac{1}{\Delta_{x}} p\left(\frac{x}{\Delta_{x}}\right) \qquad \text{(page 349(4))}$$

$$\mathcal{F}[\sum_{n} \delta(x - n\Delta_{x})] = \mathcal{F}\left[\frac{1}{\Delta_{x}} p\left(\frac{x}{\Delta_{x}}\right)\right] = \underline{p}(\Delta_{x}f) \qquad \text{(page 355(5))}$$

$$= \sum_{n} \delta(\Delta_{x}f - n) = \frac{1}{\Delta_{x}} \sum_{n} \delta\left(f - \frac{n}{\Delta_{x}}\right)$$

5.1.2 Sampling Theory

[**Theorem 5.1.2**] Suppose that we perform sampling for a continuous signal with sampling interval Δ_x

$$g(x) \xrightarrow{sampling} g_s(x) = g(x) \sum_n \delta(x - n\Delta_x)$$

$$= \sum_n g_n \delta(x - n\Delta_x) \quad \text{where}$$

$$g_n = g(n\Delta_x)$$

$$G_s(f) = \frac{1}{\Delta_x} \sum_n G\left(f - \frac{n}{\Delta_x}\right)$$

(Proof): Since $g_s(x) = g(x) \frac{1}{\Delta_x} p\left(\frac{x}{\Delta_x}\right)$

$$\mathcal{F}[g_s(x)] = \mathcal{F}[g(x)] * \mathcal{F}\left[\frac{1}{\Delta_x} p\left(\frac{x}{\Delta_x}\right)\right]$$

$$G_s(f) = G(f) * p(\Delta_x f) = \frac{1}{\Delta_x} \sum_n G(f) * \delta\left(f - \frac{n}{\Delta_x}\right) = \frac{1}{\Delta_x} \sum_n G\left(f - \frac{n}{\Delta_x}\right)$$

(page 393)

435

[Sampling Theory]

The sampling frequency $f_s = \frac{1}{\Delta_x}$ should be larger than twice of the bandwidth of the original continuous function:

 $f_s - B > B$

where

$$f_{s} > 2B$$
 (Nyquist criterion)
 $G(f) = 0$ when $f > B$.

Otherwise, the original function cannot be reconstructed and the aliasing effect is led.

Q: What will happen if $f_s = 2B$?

Even component with frequency $f = \pm B \rightarrow$ preserved

$$(os(2\pi B\pi)) \xrightarrow{1}_{-B} \xrightarrow{1}_{-B} \xrightarrow{1}_{-B} \xrightarrow{3}_{-B}$$

Odd component with frequency $f = \pm B \rightarrow$ destroyed

$$\sin(27Bx) \xrightarrow{\frac{1}{5}} \xrightarrow$$

5.1.3 Reconstruction (Digital to Analogous)

When the Nyquist criterion is satisfied, one can apply the lowpass filter to reconstruct the original signal.

Time Domain

Frequency Domain

G(f)g(x)D/A conversion sampling $g_{n} = g(n\Delta_{x})$ $g_{s}(x) = \sum_{n} g_{n}\delta\left(x - \frac{n}{f_{s}}\right)$ $G_{s}(f) = f_{s} \sum_{n} G(f - nf_{s})$ A/D conversion $G(f) = \frac{1}{f_c} \Pi\left(\frac{f}{2f_c}\right) G_s(f)$ reconstruction $g(x) = g_s(x) * \frac{2f_c}{f_s} \operatorname{sinc}(2f_c x)$ yage 355(5) where $B < f_c < f_s - B$

$$g(x) = \frac{2f_c}{f_s} \int g_s(\tau) \operatorname{sinc}(2f_c(x-\tau)) d\tau$$

$$= \frac{2f_c}{f_s} \int \sum_n g_n \delta\left(\tau - \frac{n}{f_s}\right) \operatorname{sinc}(2f_c(x-\tau)) d\tau$$

$$g(x) = \frac{2f_c}{f_s} \sum_n g_n \operatorname{sinc}\left(2f_c(x-\frac{n}{f_s})\right)$$

Specially, when $f_c = f_s/2$

$$g(x) = \sum_n g_n \operatorname{sinc}(f_s x - n)$$

Signal Reconstruction Formula: Shannon's theorem

$$g(x) = \sum_n g_n \operatorname{sinc}\left(\frac{x}{\Delta_x} - n\right)$$

where $g_n = g(n\Delta_x)$

$$\operatorname{constraint:} \frac{1}{\Delta_x} > 2B$$

[Example 1] Suppose that

$$g_{n} = g\left(\frac{n}{2}\right) \qquad \mathbf{x}_{\mathbf{x}} = \frac{1}{\mathbf{z}}, \quad \mathbf{f}_{\mathbf{s}} = 2$$

$$g_{-1} = g_{1} = 1, \quad g_{0} = 2, \qquad g_{n} = 0 \quad \text{otherwise}$$

$$G(f) = 0 \quad \text{for } f \ge 1$$

$$\text{Try to reconstruct } g(x).$$

(Solution): $\Delta_x = 1/2$

$$g(x) = \operatorname{sinc}(2x+1) + 2\operatorname{sinc} 2x + \operatorname{sinc}(2x-1)$$

(Note): $\operatorname{sinc}(2x+1)$, $2\operatorname{sinc}(2x)$, $\operatorname{sinc}(2x-1)$ do not interfere with one another at x = n/2.

5.1.4 Varying the Sampling Rate

(i) D/A conversion

$$g(x) = \sum_{n} g_n \operatorname{sinc}\left(\frac{x}{\Delta_x} - n\right)$$

(ii) Re-sampling

$$\hat{g}_n = g(n\Delta_{new}) = \sum_m g_m \operatorname{sinc}\left(\frac{n\Delta_{new}}{\Delta_x} - m\right)$$

Note: When $\Delta_{new} = k\Delta_x$ and k is an integer

$$\hat{g}_n = g_{kn}$$

From the view point of the spectrum, if

$$g_{s}(x) = \sum_{n} g_{n} \delta(x - n\Delta_{x}) \qquad \hat{g}_{s}(x) = \sum_{n} \hat{g}_{n} \delta(x - n\Delta_{new})$$

then

$$G_{s}(f) = f_{s} \sum_{n} G(f - nf_{s}) \qquad \hat{G}_{s}(f) = f_{new} \sum_{n} G(f - nf_{new})$$
where $f_{s} = 1/\Delta_{x}, \quad f_{new} = 1/\Delta_{new}$

$$G_{s}(f) \qquad \qquad f_{s} = 0 \qquad B \qquad f_{s} - B \qquad f_{s} \qquad f_{s} - axis$$

$$\hat{G}_{s}(f) \qquad \qquad f_{new} = 0 \qquad B \qquad f_{new} - B \qquad f_{new} \qquad f_{s} - axis$$

5.2 Discrete Fourier Transform

5.2.1 Derivation and Definitions of the Discrete Fourier Transform

To process discrete functions, the continuous Fourier transform should be converted into the discrete version.

Continuous Fourier transform:

$$G(f) = \int_{-\infty}^{\infty} g(x) e^{-j2\pi f x} dx$$

If we set

$$f = m\Delta_f, \quad x = n\Delta_x$$

then

$$G(m\Delta_f) = \sum_n g(n\Delta_x) e^{-j2\pi m n\Delta_f \Delta_x} \Delta_x$$

 $dx \rightarrow \Delta x$

$$G(m\Delta_f) = \sum_n g(n\Delta_x) e^{-j2\pi m n\Delta_f \Delta_x} \Delta_x$$

Specially, if

$$\Delta_f \Delta_x = 1 / N$$

then

$$G(m\Delta_f) = \sum_n g(n\Delta_x) e^{-j\frac{2\pi mn}{N}} \Delta_x$$

Similarly, for the continuous inverse Fourier transform:

$$g(x) = \int_{-\infty}^{\infty} G(f) e^{j2\pi fx} df$$

$$g(n\Delta_x) = \sum_n G(m\Delta_f) e^{j2\pi mn\Delta_f \Delta_x} \Delta_f$$

$$f = \sum_m G(m\Delta_f) e^{i \frac{j}{N} \frac{2\pi mn}{N}} \Delta_f$$

Discrete Fourier Transform (DFT)

$$G[m] = DFT \{g[n]\} = \sum_{n=0}^{N-1} g[n]e^{-j\frac{2\pi nn}{N}}$$

$$m, n = 0, 1, 2, \dots, N-1$$

Inverse Discrete Fourier Transform (IDFT)

$$f = m \Delta \rho$$

$$g[n] = IDFT \{G[m]\} = \frac{1}{N} \sum_{m=0}^{N-1} G[m]e^{j\frac{2\pi mn}{N}}$$

Note that the output of $g[n]$ is periodic

$$G[m] = G[m+N]$$

Also note that, on page 445,

 $G(m\Delta_f) = DFT(g(n\Delta_x))\Delta_x$

M-1

The DFT and the IDFT form a transform pair since

$$\frac{1}{N}\sum_{m=0}^{N-1}G[m]e^{j\frac{2\pi mn}{N}} = \frac{1}{N}\sum_{m=0}^{N-1}\sum_{k=0}^{N-1}g[k]e^{-j\frac{2\pi mk}{N}}e^{j\frac{2\pi mn}{N}} = \frac{1}{N}\sum_{k=0}^{N-1}g[k]\left(\sum_{m=0}^{N-1}e^{-j\frac{2\pi mk}{N}}e^{j\frac{2\pi mn}{N}}\right)$$
Because $a \cdot n \cdot k$

$$\sum_{k=0}^{N-1}e^{j\frac{2\pi a}{N}}e^{j\frac{2\pi a}{N}} = \frac{1}{N}e^{j\frac{2\pi a}{N}}e^{j\frac{2\pi a}{N}} = \frac{1}{N}e^{j\frac{2\pi a}{N}}e^{j\frac{2\pi mn}{N}} = \frac{1}{N}\sum_{k=0}^{N-1}g[k]\left(\sum_{m=0}^{N-1}e^{-j\frac{2\pi mk}{N}}e^{j\frac{2\pi mn}{N}}\right)$$

Because a=n-k

$$\sum_{m=0}^{N-1} e^{j\frac{2\pi a}{N}m} = \frac{1 - e^{j\frac{2\pi a}{N}N}}{1 - e^{j\frac{2\pi a}{N}}} = \frac{1 - e^{j2\pi a}}{1 - e^{j\frac{2\pi a}{N}}} = 0$$

if
$$a \neq 0$$
,

$$\sum_{m=0}^{N-1} e^{j\frac{2\pi a}{N}m} = N \qquad \text{if } a = 0,$$

$$\sum_{m=0}^{N-1} e^{j\frac{2\pi m}{N}(n-k)} = N\delta_d \left[n-k\right]^{\checkmark}$$

$$\frac{1}{N}\sum_{m=0}^{N-1}G[m]e^{j\frac{2\pi mn}{N}} = \frac{1}{N}\sum_{k=0}^{N-1}g[k]N\delta_d[n-k] = g[n]$$

Unit Impulse Function (discrete Dirac delta function)

The unit impulse function has an explicit form. It does not a limitation of a distribution.

Compared to page 347,
$$\sum_{n} \delta_{d} [n] = 1$$
$$\delta_{d} [n] = 0 \quad if \ n \neq 0$$
$$\delta_{d} [n] = \delta_{d} [-n]$$

Other possible definitions of the DFT

DFT
$$G[m] = \sum_{n=n_0}^{n_0+N-1} g[n] e^{-j\frac{2\pi mn}{N}}$$

IDFT
$$g[n] = \frac{1}{N} \sum_{m=m_0}^{m_0+N-1} G[m] e^{j\frac{2\pi mn}{N}}$$

DFT
$$G[m] = \sqrt{\frac{1}{N}} \sum_{n=0}^{N-1} g[n] e^{-j\frac{2\pi mn}{N}}$$

IDFT
$$g[n] = \sqrt{\frac{1}{N}} \sum_{m=0}^{N-1} G[m] e^{j\frac{2\pi mn}{N}}$$

5.2.2 Implementing Continuous FT by the DFT

Suppose that we want to calculate the continuous FT of g(x) digitally and

$$g(x) = 0$$
 for $x \notin [x_1, x_1 + T]$

(i) Shifting

Note:

$$g_1(x) = g(x + x_1)$$

 $g_1(x) = 0$ for $x \notin [0, T]$
for $x \notin [0, T]$

(ii) Sampling

$$g_d[n] = g_1(n\Delta_x)$$

(iii) DFT $G_d[m] = \sum_{n=0}^{N-1} g_d[n] e^{-j\frac{2\pi mn}{N}}$

(iv) Mapping to the true frequency

$$G_{1}\left(m\Delta_{f}\right) = G_{d}\left[m\right]\Delta_{x} \quad \text{(from pages 445 and 446)}$$
Since
$$\Delta_{f}\Delta_{x} = 1/N \quad \Delta_{f} = \frac{1}{N\Delta_{x}} = \frac{f_{s}}{N} \quad \text{when } m \ge \frac{\Lambda}{2}$$

$$f = (m-N)\Delta_{p} = (m-N) f_{s}$$
Therefore,
$$M \quad G_{1}\left(m\frac{f_{s}}{N}\right) = G_{d}\left[m\right]\Delta_{x} \quad \text{if } 0 \le m \le N/2,$$

$$G_{1}\left(m\frac{f_{s}}{N} - f_{s}\right) = G_{d}\left[m\right]\Delta_{x} \quad \text{if } N/2 \le m \le N-1$$

(v) Using the modulation property

$$G(f) = e^{-j2\pi x_1 f} G_1(f)$$
 page 453(4)

[Example 1] : Suppose that

 $g(x) = (1-|x|)^2$ for $-1 \le x \le 1$ g(x) = 0 otherwise Sampling interval : $\Delta_x = 0.1$ $f_s = 10$

How do we obtain the FT of g(x) by the DFT?

(Solution): (i) $g_1(x) = g(x-1)$

(v) $G(f) = e^{j2\pi f}G_1(f)$

5.2.3 Transform Pairs and Properties

[Duality Property]

If
$$G[m] = DFT \{g[n]\}$$

then $g[((-m))_N] = \frac{1}{N} DFT \{G[n]\} DFT \{G[n]\} = Ng[((-m))_N]$
 $((a))_N : a \mod N \qquad 0 \leq ((a))_N \leq N-1$
the remainder of a after divided by $N \qquad ((12))_{10} = 2$
 $((-4))_{10} : 6$
 $g[((-m))_N] = \begin{cases} g[N-m] & \text{if } m = 1, 2, \dots, N-1 \\ g[0] & \text{if } m = 0 \end{cases}$

If
$$G[m] = DFT\{g[n]\}$$
 then $g[((-m))_N] = \frac{1}{N}DFT\{G[n]\}$

(Proof):
$$\frac{1}{N}DFT\{G[n]\} = \frac{1}{N}\sum_{n=0}^{N-1} e^{-j\frac{2\pi nn}{N}}G[n]$$
$$= \frac{1}{N}\sum_{n=0}^{N-1} e^{-j\frac{2\pi nn}{N}}\sum_{k=0}^{N-1} e^{-j\frac{2\pi nk}{N}}g[k] = \frac{1}{N}\sum_{k=0}^{N-1} \left(\sum_{n=0}^{N-1} e^{-j\frac{2\pi nn}{N}}e^{-j\frac{2\pi nk}{N}}\right)g[k]$$

Since

$$\sum_{n=0}^{N-1} e^{j\frac{2\pi n}{N}a} = \delta_d \left[\left((a) \right)_N \right]$$

(proved on the next page)

$$\frac{1}{N}DFT\{G[n]\} = \frac{1}{N}\sum_{k=0}^{N-1} N\delta_d [((-m-k))_N]g[k]$$
$$= \sum_{k=0}^{N-1} \delta_d [((m+k))_N]g[k] = g[((-m))_N$$

$$\sum_{n=0}^{N-1} e^{j\frac{2\pi a}{N}n} = N\delta_d \left[((a))_N \right] \qquad ((a))_N: \text{ the remainder of } a \text{ after divided by } N$$

When $a \neq bN$ where *b* is some integer

$$\sum_{n=0}^{N-1} e^{j\frac{2\pi a}{N}n} = \frac{1-e^{j\frac{2\pi a}{N}N}}{1-e^{j\frac{2\pi a}{N}}} = \frac{1-1}{1-e^{j\frac{2\pi a}{N}}} = 0$$

When a = bN where b is some integer (i.e., $((a))_N = 0$)

$$\sum_{n=0}^{N-1} e^{j\frac{2\pi a}{N}n} = \sum_{n=0}^{N-1} e^{j2\pi bn} = \sum_{n=0}^{N-1} 1 = N$$

[Determine the IDFT by the DFT]

 $g_1[m] = DFT\{G[n]\}$ $g[n] = \frac{1}{N}g_1[-n]$

Note:

(i) Computation loading of the IDFT = Computation loading of the DFT(ii) In industry, only the chip of the DFT is required.

[Transform Pairs] 比較 page 340

g[n]	G[m]
(1) $\delta_d[n]$ (see page 448)	1
(2) 1	$N\delta_d[m]$
(3) $\delta_d[n-k]$	$\exp[-j2\pi km/N]$
(4) $\exp[j2\pi kn/N]$	$N\delta_d[m-k]$
(5) $\cos[2\pi kn/N]$	$\frac{N}{2}\delta_d\left[m-k\right] + \frac{N}{2}\delta_d\left[m-(N-k)\right]$
(6) $\sin[2\pi kn/N]$	$-j\frac{N}{2}\delta_{d}\left[m-k\right]+j\frac{N}{2}\delta_{d}\left[m-(N-k)\right]$
(7) $g[n] = 1$ for $0 \le n \le W$ g[n] = 0 otherwise	$e^{-j\frac{\pi W}{N}m}\frac{\sin(\pi m(W+1)/N)}{\sin(\pi m/N)} for \ m \neq 0,$ W+1 for m = 0
(8) $\exp[-kn], k \neq 0$	$\frac{1 - e^{-Nk}}{1 - e^{-k - j2\pi m/N}}$

[Discrete Impulse Train]

$$p_{c}[n] = \begin{cases} 1 & if \ n \ is \ a \ multiple \ of \ c \\ 0 & otherwise \end{cases} c \ is \ a \ factor \ of \ N$$

N = 12

[Example 2] Determine the DFT of $p_c[n]$

Therefore, $DFT\left\{p_{c}[n]\right\} = \frac{N}{c}p_{N/c}[m]$

463

N=12

Properties

比較 page 355

(1) Linear	$DFT\{ax[n] + by[n]\} = aX[m] + bY[m]$
(2) DC Values	$G[0] = \sum_{n=0}^{N-1} g[n], g[0] = \frac{1}{N} \sum_{n=0}^{N-1} G[m]$
(3) Shifting	$DFT\left\{g\left[\left((n-k)\right)_{N}\right]\right\} = W^{km}G[m]$
	where $((n))_{N} = n$ if $0 < n < N-1$
	$((n))_N = n + N$ if $-N < n < -1$
	$((n))_N = n - N$ if $N \le n \le 2N - 1$
	$W = \exp(-j2\pi / N)$
(4) Modulation	$DFT\left\{W^{kn}g[n]\right\} = G[((m+k))_N]$
(5) Time Reverse	$DFT\left\{g\left[\left((-n)\right)_{N}\right]\right\} = G\left[\left((-m)\right)_{N}\right]$
(6) Even /Odd Input	If $g[n] = g[((-n))_N]$, then $G[m] = G[((-m))_N]$; If $g[n] = -g[((-n))_N]$, then $G[m] = -G[((-m))_N]$;

(7) Conjugate	$DFT\{g^{*}[n]\} = G^{*}[((-m))_{N}]$
(8) Real/Imaginary Input	If $g[n]$ is real, then $G[m] = G^*[((-m))_N]$; If $g[n]$ is pure imaginary, then $G[m] = -G^*[((-m))_N]$;
(9) Circular Convolution	If $y[n] = g[n] *_{c} h[n] = \sum_{k=0}^{N-1} g[k] h[((n-k))_{N}]$ then Y[m] = G[m]H[m]
(10) Circular Correlation	If $y[n] = g[n] *_{c} h^{*} [((-n))_{N}]$ $= \sum_{k=0}^{N-1} g[((k+n))_{N}] h^{*}[k]$ then $Y[m] = G[m] H^{*}[m]$
(11) Parseval's Theorem (Energy Preservation)	$N\sum_{n=0}^{N-1} g[n] ^2 = \sum_{m=0}^{N-1} G[m] ^2$
(12) Generalized Parseval's Theorem	$N\sum_{n=0}^{N-1} g[n]h^*[n] = \sum_{m=0}^{N-1} G[m]H^*[m]$

5.2.4 Discrete Circular Convolution

[Discrete Circular Convolution]

$$g[n]*_{c}h[n] = \sum_{k=0}^{N-1} g[k]h[((n-k))_{N}]$$

(Proof of the convolution property)

$$\frac{1}{N} \sum_{m=0}^{N-1} G[m] H[m] e^{j\frac{2\pi m}{N}n} = \frac{1}{N} \sum_{m=0}^{N-1} \sum_{k=0}^{N-1} g[k] e^{-j\frac{2\pi m}{N}k} \sum_{s=0}^{N-1} h[s] e^{-j\frac{2\pi m}{N}s} e^{j\frac{2\pi m}{N}n}$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} \sum_{s=0}^{N-1} g[k] h[s] \sum_{m=0}^{N-1} e^{j\frac{2\pi (n-s-k)}{N}m}$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} \sum_{s=0}^{N-1} g[k] h[s] N \delta_d [((n-s-k))_N]$$

$$= \sum_{k=0}^{N-1} g[k] h[((n-k))_N]$$
Here we apply $\sum_{n=0}^{N-1} e^{j\frac{2\pi a}{N}n} = N \delta_d [((a))_N]$ ((a))_N: the remainder of a after divided by N

[Discrete Circular Convolution and Discrete Linear Convolution]

A discrete linear time-invariant (LTI) system can always be expressed a discrete linear convolution:

$$y_1[n] = g[n] * h[n] = \sum_{k=0}^{N-1} g[k]h[n-k]$$

However, the convolution implemented by the DFT is the discrete circular convolution:

If

 $y[n] = IDFT(DFT\{g[n]\}DFT\{h[n]\}) = IDFT(G[m]H[m])$

then

$$y[n] = g[n] *_{c} h[n] = \sum_{k=0}^{N-1} g[k]h[((n-k))_{N}]$$

 $((a))_N$: the remainder of *a* after divided by *N*

$$y_{1}[n] = g[n] * h[n] = \sum_{k=0}^{N-1} g[k]h[n-k]$$
timear convolution:
$$y_{1}[n] = g[n] *_{c} h[n] = \sum_{k=0}^{N-1} g[k]h[((n-k))_{N}]$$
For example,
$$k=3, n=2, n-k=4$$

$$y_{1}[2] = g[0]h[2] + g[1]h[1] + g[2]h[0] + g[3]h[-1] + g[4]h[-2] + \dots$$

$$y[2] = g[0]h[2] + g[1]h[1] + g[2]h[0] + g[3]h[N-1] + g[4]h[N-2]$$

$$+\dots + g[N-1]h[3]$$

$$k = N-1, n=2, n-k = 3-N, (ln-k)_{N}=3$$

The condition where the circular convolution is equal to the linear convolution: (i) g[n] = 0 for n < 0 or $n \ge M$

(i)
$$s[n] = 0$$
 for $n < 0$ or $n \ge L$ length (h[n]):

(iii) $N \ge M + L - 1$

The condition where the circular convolution is equal to the linear convolution:

(i)
$$g[n] = 0$$
 for $n < 0$ or $n \ge M$
(ii) $h[n] = 0$ for $n < 0$ or $n \ge L$
(iii) $N \ge M + L - 1$
(Proof): $y[n] = \sum_{k=0}^{N-1} g[k]h[((n-k))_N]$
 $y[n] = g[0]h[n] + g[1]h[n-1] + \dots + g[n]h[0] + (g[n+1]h[N-1] + g[n+1]h[N-1] + g[n+2]h[N-2] + \dots + g[N+n+1-L]h[L-1] + \dots + g[N-1]h[n+1]]$
 $= g[0]h[n] + g[1]h[n-1] + \dots + g[n]h[0]$ Since $h[N] \ge 0$ for $h \ge 1$
 $+ g[N+n+1-L]h[L-1] + \dots + g[n]h[0]$ Since $h[N] \ge 0$ for $h \ge 1$
 $+ g[0]h[n] + g[1]h[n-1] + \dots + g[n]h[0] = y_1[n]$
(Since $N+n+1-L \ge N+1-L \ge M$) $N+n+1-L \ge M$ should be satisfied $N \ge M+L-1-h \ge n \ge 0$
 $N \ge M+L-1-h \ge n \ge 0$

5.2.5 Complexity

$$G[m] = \sum_{n=0}^{N-1} g[n] e^{-j\frac{2\pi mn}{N}}$$

Direct implementation: Complexity = $O(N^2)$

With the fast algorithm: Complexity = $O(N\log_2 N)$

$$G[m] = \sum_{n=0}^{N-1} g[n] e^{-j\frac{2\pi mn}{N}}$$

$$G[m] = \sum_{n=0}^{N-1} g[n] e^{-j\frac{2\pi mn}{N}}$$

$$G[m] = \sum_{n=0}^{N-1} g[n] e^{-j\frac{2\pi mn}{N}} = \sum_{n=0}^{1} g[n] (-1)^{mn}$$

$$\begin{bmatrix}G[n]\\G[1]\end{bmatrix} = \begin{bmatrix}1 & 1\\1 & -1\end{bmatrix} \begin{bmatrix}g[0]\\g[1]\end{bmatrix}$$

When $N = 2^k$

$$G[m] = \sum_{n=0}^{N-1} g[n] e^{-j\frac{2\pi mn}{N}}$$

= $\sum_{n=0}^{N/2-1} g[2n] e^{-j\frac{2\pi m(2n)}{N}} + \sum_{n=0}^{N/2-1} g[2n+1] e^{-j\frac{2\pi m(2n+1)}{N}}$
= $\sum_{n=0}^{N/2-1} g_1[n] e^{-j\frac{2\pi mn}{N/2}} + e^{-j\frac{2\pi m}{N}} \sum_{n=0}^{N/2-1} g_2[n] e^{-j\frac{2\pi mn}{N/2}}$
twiddle factors
 $g_1[n] = g[2n], \quad g_2[n] = g[2n+1]$

Therefore,

one *N*-point DFT = two (*N*/2)-point DFT + twiddle factors

 $w = e^{-j\frac{2\pi}{8}}$

- J. W. Cooley and J. W. Tukey, "An algorithm for the machine computation of complex Fourier series," *Mathematics of Computation*, vol. 19, pp. 297-301, Apr. 1965. (Cooley-Tukey)
- C. S. Burrus, "Index Mappings for multidimensional formulation of the DFT and convolution," *IEEE Trans. Acoustics, Speech, and Signal Processing*, vol. 25, pp. 1239-242, June 1977. (Prime factor)

5.2.6 2D DFTs

2-D Discrete Fourier Transform (2-D DFT)

$$G[p,q] = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} g[m,n] e^{-j\frac{2\pi m p}{M}} e^{-j\frac{2\pi n q}{N}}$$

G[P,9]= G[P+M,9] =G[P,9+N]=G[P+M,9+N]

2-D Inverse Discrete Fourier Transform (2-D IDFT)

$$g[m,n] = \frac{1}{MN} \sum_{p=0}^{M-1} \sum_{q=0}^{N-1} G[p,q] e^{j\frac{2\pi m p}{M}} e^{j\frac{2\pi n q}{N}}$$

G[P+M,0]:G[P,9]

Low Frequency Part (similar to the blurred version of the input image)

High Frequency Part (similar to the edges)

