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7. Discrete Vector Set Approximation

Section 7.1 Discrete Orthogonal Vector Set Expansion

Section 7.2 Non-Orthogonal Discrete Vector Set Expansion

Section 7.3 Generalized Inverse MKN
M : humbey of eguatios
Section 7.4 Discrete Orthogonal Polynomials (¥ # # ¥4 ) V¢ nvbey of o lumasg

H A s a square VMMVI{(/\/X@

AXZy ard A exists (det (A) #0)
A and y are known. X: A
Problem: How do we find x such that /
Hy — AXH (L, norm of y—Ax )
is minimized? iHow 4o solve x whe

MEN or det(/x)=0]



Discrete Vector
Set Expansion |
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m=N, det(ny*O

A men — Complete (Case 1) (Sec. 7-1-2)
M< N
—— Incomplete (Case 2) (Sec. 7-1-3)
— Orthogonal —  Discrete Orthogonal

—Non-Orthogonal |

Transforms (Secs. 6-7, 7.1.1)

—— Discrete Orthogonal

Polynomials (Sec. 7-4)

—Independent

M=N, JotlA)¥0
~ Complete (Case 3)

(Secs. 7.2.1,7.2.2)

Set (Sec. 7-2)

MLN or detA)=0

- Incomplete (Case 4)
(Secs. 7.2.2,7.2.3)

—— Dependent Set (Case 5) (Sec. 7-3)
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7.1 Discrete Orthogonal Vector Set Expansion

7.1.1 Discrete Orthogonal Matrix

[Orthogonal ¢ (2] ¢ (2] ¢3[2]§ E¢N 2]

(Column Form)] A=| ¢[3] © 4[3] = 4[3] - | 4[3]

0] A M) - 4[]

If Note \ then d 0 0 0
SI 0 d, 0 - 0
u . 0 forn#k .
Z¢n[m]¢k [m]: A"A=|0 0 d3 e 0
m=1 dn fOl"l’l:k : . . . .
] O o0 o - dN_
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[Orthogonal (Column Form)]

Suppose that A 1s an MxN matrix. If all the columns of A are
orthogonal, then

A"A =D

where D 1s an NxN orthogonal matrix. Moreover, 1f all the columns of

A are orthonormal, then

d =1 )

where I 1s an NxN i1dentity matrix.

(Note: An orthonormal matrix is also called a unitary matrix. )



[Orthogonal
(Row Form)]

i ﬁmnw:[n]{

then AAH

A=

o O

610

Q

Al 42l B3] 4IN]
R I E #,|N] |
#[1] #[2] 403 ¢ [N
ell] du12] 6u13] - 4 [N].
0 form=k ex: Lo
d form=k | =2 |
| o -
. is "°‘V-'€0'\M ov{:hoaoha)
0 0 0 bul not column Lorm
d, 0 0 ora\oaona(-
0 d, 0 | norwmalize : Lzm V25 ws]
L : Vg e \AE
- ' Nz o -z
0 O d,| ©s both VOW“QOTW\ or{hono:ml

and coluwn (“DYW‘ ovfho nov mngl -
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[Orthogonal (Row Form)]

Suppose that A is an MxN matrix. If all the rows of A are orthogonal,
then

AAY =D

where D is an MxM orthogonal matrix. Moreover, if all the rows of A
are orthonormal, then 4
A"A=1

AA" =T 2 AAT S pHA
where I 1s an MxM i1dentity matrix.

(Note: If a set of vectors is orthogonal, then these vectors should be

linearly independent. Therefore, if the rows of A are orthogonal, then
M < N should be satisfied.)

———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

X orthogonal (row form) # orthogonal (column form)
orthonormal (row form) = orthonormal (column form)

______________________________________________________________________________________________________________________
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[Inverse of an Orthogonal Matrix]

If A 1s a square matrix (1.e., M = N)
(1) If all the columns of A are orthogonal, AHA= D, then
A—l — D—IAH D-'AHA ;I

(2) If all the columns of A are orthonormal, AHA= 1, then

AT =A"
(3) If all the rows of A are orthogonal, AAH= D, then
A7 =A"D"

(4) If all the rows of A are orthonormal, AAH=1, then

AT =A"
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[Example of Orthogonal Matrix]

e DFT 7
e Discrete Cosine Transform _ both  row-form  and

column-form orthogonal
e Walsh (Hadamard Transform)

e Haar Transform (I‘OW-fOI‘m orthogonal)

e Discrete Orthogonal Polynomial Matrices (row-form orthogonal)

|[Example 1]

11 1 1] /4 1/4 1/4  1/4°
wash | © s |14 174 —1/4 -1/4
W, - w!'=1liw/ =

1 -1 1 4 1/4 —1/4 —1/4 1/4

1 -1 1 =1 /4 -1/4 1/4 -1/4]
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[Duality Property of Orthogonal Matrices]

If all the columns of a square matrix A are orthonormal, then all the rows
of A are orthonormal, too.

(Proof): If
A"A =1

then since AH= A-! we have
AA" = AA T =1

Therefore, all the rows of A are orthonormal, too.



[Example 2] Note that,

if
11 1]
A=[1 =2 0
11 -1

615

then the columns of A are orthogonal. However, the rows of A are not

orthogonal.

If we perform normalization for the columns A and obtain B:

13 1N6 12

B=

1/\3  -2/6 |

B"’B=1, BB”"=I

0

/N3 16 —1/42

then both the columns and the rows of B are orthonormal:
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7.1.2 Discrete Orthogonal Vector Set Expansion of
the Complete Case (Case 1)

Suppose that b,[n], by[n], .... by[n] forms a complete and orthogonal
set in CV:

- 0 form=k
b |n|b; [n]=
Salaleilal={, o
If we want to expand y[n] by a linear combination of b, [n] (m = 1, 2,
..., N): N
y[n]= mebm [n]
m=1 N
> y[n]b,[7]
then, analogous to page 277, x, =
2D, [n]b,[]




From the view point of the matrix 617

_bl[l] bz[l] b, 1] bN:l]_
If bl[z]i b2[2] bs 2] ibN 2]
A= 53] &[] B3] by[3]

BIN] BN AIN] - b

x=[x x x oox ] y=D M2 M3 - NI
then the problem can be re-expressed as
Ax =y
Since r 0 if m#n

A"A=D where D[m,n]:< N .
b, [kIbi[k] if m=n

we have y oo N dm
> y[n]b,[n]
x=A"y=D"A"y, X, ="
2 b, [n]b, [n]
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[Parseval’s Theorem for Discrete Orthogonal Matrix]

If owmalogsa Ho pye 3o/
AX:y SCIM“'e ov-uaogﬂml W\A.'(‘V'U(

and the columns of A are orthogonal, then

g\y[n]\z > gdn

(Proof): " olumn
v’y =x"A"Ax =x"Dx

N
x[n]f where d, = Z‘A[k,n]‘2
k=1

[Example 3]
Parseval’s theorem for the DFT and the Walsh transform:

> Jy[n] = NY el

Parseval’s theorem for the DCT

> Jy[n) = Xlelnl’
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7.1.3 Discrete Orthogonal Basis Expansion of the

Incomplete Case (Case 2)

3 y;:.(rv/\l/ m | ~M

Suppose that b,[n], b,[n], .... by[n] forms an incomplete and
orthogonal set in CV but M < N:

N . 0 form=#k

2 b, [n]b;[n] = _

— d_form=k

If we want to expand y[n] by a linear combination of b, [n] (m =1, 2,

ooy M):

y[ n] ~ i x b [ n] The formulas are similar to
m=1 those of Case 1, except for
then v that y[n]= isreplaced by
>y [t [ )=
X = n=l

S, [n]b[1] Some as Case |
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Note:

(1) Since b,[n], b,[n], . bM[ ] can be viewed as a subset of a complete
and orthogonal set {b[ 1, bylnl, ...., bylnl, byqlnl, ..., by [n]}, the
method to determine the linear combination coefficients x,, is all the
same as that of the complete case.
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Note:
N
(2) Determine x,, by x —Z y|[nlb, [n /me b, |n] can minimize
n=1 n=l1
M \/ N M 2
yin|=) x b |n|l= yin|- xmbmnj.
QAT BN 3 T S 1] I
2 2 bn,: bmb.]
M N[ N N , .
1-San ] =3 st = S amt La
m=1 n=1 =M +1 —M+1 H

o i ‘xm‘ o Z dm ‘ m‘ im‘}\b“‘\"*x LM‘E". ‘XML”>
o X(XM-H bw\'n(hﬂ. M-l—;." +)$yl°ﬂ

(from Parseval’s theorem on page 618) where d, = Z‘b ‘

l7f m Am

M 2 N , M ,
-Sosnle] =Sl - St - blali - S b




622
[Example 4] Suppose that o Nzl

y=[1' 1556 6 5 4 4 3 3]
Try to expand y as a linear combination of
b=t 1111111111 |

and b,=[-5 4 3 2 -1 012345 (N*

Mm=2
such that [y —xb, —x,b,| is minimized. A | +%5 (n -6)
Wcowplete
(Solution): It 1s obvious that b, and b, are orthogonal. Therefore,
11 11
Z)’ -n-bl* n] Zy[n]bz n
= A S _12
LT T 11 110
> b [n]b[n 2. by [n]b;[n]
n=1 o o n=1
y=43p, + 5p,

11 55
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| | | | !
1 2 3 4 5 6 7 8 9 10 11

Blue: ¥ Red: ﬁb +%b
‘y xby —x, 2‘2 HyH ‘xl‘ Hb1H ‘xz‘ZHbz“2:29°6
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7.2 Non-Orthogonal Discrete Basis Expansion

7.2.1 Method 1: Matrix Inverse (asc3

Suppose that{b,[n], b,[n], b;[n], .......... , by[n]} are linearly independent
and complete vector set in CV but are not orthogonal. (Case 3)

To express y[n] € CV by a linear combination ofb,[n], b,[n], b;[n],

olirl= Y, o]

we first construct a matrix A:

_bl[l: bz[l] b3[1] le] de_e(A)Fo
bl2] b2 b2 - b[2] o otk

A= b1[3 b2[3] b3[3] bN3]

BV BIN] BN - bV



N _ 625
Then, o Al ,xmczﬁ[_'u]yw]
Yy »nzl
from page (4%

y=[1] 2] »3] - NI

where

X:[)Cl Xy Xy )CN]T

[Dual Orthogonal]

{b,[n], by[n], bs[n], .......... , by[n]} are dual orthogonal to {¢,[n],
o,[nl, ¢snl, .......... , dy[n]} if:

0 ifm#k
u if m==~k

m

In fact, they are also dual orthonormal 1f u,, = 1.



A'A=1 626
If _bl[l]é bz[l] b3[1]§ bN[l]
bl2] b[2] ¢ b[2] - by[2]
A=|b[3] B[3] B[] - b[3]

BIN] BN] B[N] - by [N]
Al 42 a3 - 4[N] 8.
Conjugaﬁ% ¢21 _____ ¢22¢23¢2N Al ¢3~‘
K_l = ¢3 1 ¢3 2 ¢3 3 ¢3 N ¢
[ L P ER _ mf‘

then {b,[n], b,[n], bs[n], .........., by[n]} are dual orthonormal to {@,[n],
o [n], ¢slnl, oo, onnl}:

il o |0 fm#Ek

S, ladlnl-{] 777
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7.2.2 Method 2: Gram-Schmidt (Cases3,4)

Suppose that{b,[n], b,[n], ...... , by[n]} are linearly independent but not
orthogonal. Then we can follow the Gram-Schmidt process to convert it
into an orthogonal set {a,[n], a,[n], ...... , ay,[n]} and perform expansion.

(applicable for both complete and incomplete case)

 hln]
= )

S
I

a |n|= gm[n]
e ]
m = m+l1



: Co. 628
Find x,, x,, ..., x,, t0 minimize Hy —xb, —x,b, = — beMH

by the Gram-Schmidt method.

Step 1: Convert {b,[n], b,[n], ...... , by, [n]} into an orthogonal set
{a,[n], a,[n], ...... , a,[n]} by the Gram-Schmidt method.

=~ izmam [n]  z,= ZN:y[n]b; [n]  (from page 619)

k
= Z Ck,mbm [l’l]
m=1

Step 3: If

then

sz;ckm L n]= ZZchkm M :ix b, [n]

m=1 k=m m=I
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[Example 1] Suppose that

y=[2 3 3 4 5 4 5]

Try to express y as x,b, + x,b, + x;b; where

_ . (ose 4
b,=[1 1 111 1 1] no n—orthogovia/
b,=[1 2 3 45 6 7 (o plete
b,=[l -1 1 -1 1 -1 1]

such that
ly —xb, —x,b, —x;b;| is minimized

using the Gram-Schmidt method.
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(Solution):

LR I N I R SR R

RN AN
g, =b, —aIsz[n]al[n] =b, —4/7a, =b, —4b,
n=1

-[-3 =2 -1 0 1 2 3]

2_g2_ 2

L3 2 -1 01 2 3

1
b, +—=b,=
AN AN A N A NG

7

7
=b,—a,Y b[nla[n]-a,> bnla,[n]=b,——a, —0a, =b, —%bl
n=1 \/7

n=1

:%[3 4 3 —4 3 —4 3]

83 _ 7g3_—1b+7b:13_43_43_43
AN TN PN 2@[ |




Therefore

26

7

;y[n]az[n]=%
APVQM [73‘9? 6'?

~ + Bl Lan
y[n]:ﬁal[n] 27 2[ ] 21 3[ ]

yln]=31p ]+ 135,

]+ b, [n]

42 42

[99 115 138

154 177 193 216}
42 42 42 42

631



y[n]= 22 a[n]

NG

26

)= o)+ a i)

13

Zﬁaz[n]
+ 1 a3[n]
221

n)= 2]+

(O]

(O]

0)

)

632



Least mean Squove B o proX \"““ﬂ;‘gg
7.2.3 Method 3: Least Square Appr0x1mat10n

Suppose that{b,[n], b,[n], ...... , b, [n]} are real and linearly independent
but not orthogonal and incomplete. If we want to find x,, such that

= Hy —xb; —x,b, _"'_beMH

1s minimized, we can also apply the least square approximation method.

-3 otn-Lnin)

2 z{ax ( m-3 b [n]ﬂ [ [n]—;xkbkmj

" . m
—Z—me[n (y[n Zxkb [n] j

=—2Zb [n]y[n] +2Zxk2b [n]b,[n] =O
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Therefore, 1f we want

9 F*=0 form=1,2,... M

ox,
then
M N N
> x> b [nlbn]=) b,[nly[n]  form=1,2,..,M
k=1 n=l n=I
Therefore,
Cx=1z x=C"z
where . . . .
x=[x, x, - x,] z{Zbl[n]y[n] > by[nlyln] - ZbM[n]y[n]}
Lok ey T keny
- Z:,bl[n]bl[n] Zlbl[n]bz[n] Zlbl[n]bM[n]

P I L I AT A I WAL M)

N

weN Sbulabinl Lbylrlbinl - by lalbylr]

n=1




Also note that, if

then

a1l b1 B[]
hl2] b[2] b[2]0 -
OIS

S S o

LS 5 g

1 T —
(\®)

e by —d

B[V] B[N] BIN] - BN,

C=A"'A

z=A"y where y=[y[l] y[2]

Therefore, from  x=C"'z, we have

R x=(ATA) ATy, LMSE solutton

y[M]]

635



[Example 2] Suppose that
y=[2 3 3 4 5 4 5]
Try to express y as x,b, + x,b, + x;b; where
b=[1 111 111]
b,=[1 2 3 4 5 6 7]

b,=[1 -1 1 -1 1 -1 1]
such that
ly —xb, —x,b, —x;b;| is minimized

using the least square approximation method.

636



First, we construct the matrix

Since

7 28 1]

ATA=|28 140 4
14 7

[ 93

TAVIAT — 1 | _
(ATA)'AT = | -18

| 21

-1, b2,b3_
HEE!
12 -1
1301
A=|1 4 -1 Hx matiix
1501
16| -1
17 1
241 -48 -7
(ATA)‘I:ﬁ 48 12 0
|7 0 49
76 45 28 -3 -20 -51]
12 -6 0 6 12 18
28 21 -28 21 -28 21

therefore, from x=(A'A)'A'y

637



-
3
"93 76 45 28 -3 20 -517/3| [311/168
ﬁ—lS 12 -6 0 6 12 18 || 4|=| 13/28
21 28 21 28 21 -28 21 ||5| | 1/24
4
_5_
)= gt 1]+ 5gba[n]+ 540 1]
[ 115 138 154 177 193 216}
42 4 42 42 42 R

(the same as Example 1)

638
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7.3 Generalized Inverse

Remember that, for the case where the vector sets are linearly
independent and complete, one can use the matrix inverse method
(pages 624, 625) to determine the linear combination coefficients:

If y = AX
then x=Ay xE A /)

However, when
(1) The vector sets are not linearly independent (i.e., det(A) = 0)
(2) The number of vector sets 1s smaller than the vector length
(i.e., A 1s not a square matrix)

A1 is hard to be determined.
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[Definition] Generalized Inverse

For an matrix A, if there is a matrix A* such that
AATA=A

then A" is called the generalized inverse of A.

We always use A™ to denote the generalized inverse of A.

1§ A—l @(7’.‘; , A(A"\ A)'.' AI :I_\
At=-A
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[Additional Definitions for Generalized Inverse]

(1) AA'A=A

(2) ATAAT =A"
(3) (AA*)" =AA’
@) (A"A) =A"A

If (1) 1s satisfied, then A" 1s called the generalized inverse of A.

If (1) and (2) are satisfied, then A" is called the reflexive generalized
inverse of A.

If (1), (2), (3), and (4) are all satisfied, then A" is called the pseudo

inverse of A. .
reflexive

pseudo inverse < generalized
iverse

generalized
inverse



size(A)=M x N

—M>N__|

det(A) # 0 (Case 1)

M =N — (columns are independent)

det(A) =0 (Case 3)
(columns are dependent)

columns are independent (Case 2)

— M<N—

columns are dependent (Case 4) <Svb

columns must be dependent (Case 4) Sy{>

642
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[Case 1] If A is a square matrix and all the columns of A are linearly

independent, then

A+ — A—l
Note that, in this case,
AATA=AI=A

[Case 2] If A 1s an MxN matrix, N < M, and all the columns of A are
linearly independent, then

At = (ATA)—IAT LMSE so| ution

Note that, 1n this case,
AATA=AA"A)'ATA=A

Also note that it is the same as the least square approximation method
introduced in subsection 7-2-3
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[Case 3] Suppose that A is a square matrix and some columns of A

are dependent. Then, in this case
det(A)=0

and some of the eigenvalues of A are equal to zero.

[Case 3-1] Suppose that the eigenvector-eigenvalue decomposition of
A exists (i-e, eigenvectors form o
A=EDE'  complete se+)

where D 1s a diagonal matrix where the diagonal entries are the

eigenvalues of A. T{ det (A):0

A if m=n come elgenvalue Au
Dlmal={ o

Then, the generalized inverse of A is )
I det(A)¥0, A= EDTET 1/A if m=nand 1 #0
A"=ED'E" where D'[mn|={ 0 ifm=nand A, =0
0 if m#n

if m#n

\



Note that, 1n this case,

AA"A =EDE'ED'E'EDE! =EDD'DE"'

If
S=DD'D
then
S[n.n]=AA4"'2, =4, if 1, £0
S|n,n]=21,04,=0=hn if 4,=0
S|m,n]=0 if m#n
Therefore,
S=DD'D=D

AA'A=EDE'=A

645



[Example 1] Suppose that

11 0
A=|1 2 1
01 1

Determine the generalized inverse of A.

Aet(4)=V
Case 3

(Solution): The eigenvalues of A1s A =0, 1, 3

The eigenvectors are

1
1
1

-1 1]

0 _1]T corresponding to A =1

2 1]

corresponding to A =0

corresponding to A =3

Therefore, the eigenvector-eigenvalue decomposition of A 1s

A =

-1 0 2

0 Xl »n3
1 1 1

I -1 1

0 0 0
0 1 O

0 0 3

-1

646
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Since D
(1 1 1][0 0 O][1/3 -1/3 1/3]
A=/-1 0 20 1 0}/1/2 0 -1/2
1 -1 1[0 0 3]|1/6 2/6 1/6

we have D'*

1 1 10fo 0o 0 7[1/3 -1/3 1/3°
At=|-1 0 2][0 1/1 0 ||[1/72 0 -1/2
1 -1 1jlo o0 1/3][1/6 2/6 1/6_

(5/9 1/9 —4/9]
A*=1/9 2/9 1/9
|—4/9 1/9 5/9 |

One can show that
1 1

AATA=|1 2

0 1




[Case 3-2] 648
[Generalized Inverse when the Eigenvectors are not Complete]

D, 0 - 0
0 D, - 0
If A =EDE’! where D=| . S :
00 Dy _
) _ A 1 0 0]
A 0 0 0 4 1 0
D, =4,, | %k ’ > Or :
' 0 O A, 1
00 A 0 0 0 4]
then D, 0 0

A" =ED'E'  where D" =
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When 4, # 0
if D, = 4, then Dy =1/4,
A 0 - 0 1/, 0 - 0]
0 A4 - 0 .0 1/4 - 0
(LIt D= . . . . |, then D.=| . L R
%0 I : . .
0 0 - A 0 0 - 1/4
A 10 - 0] A AT A e (DM
0o A4 1 - 0 0o A -7 :
2)IfD, =| ¢ ¢ .. . | D=l LT s
0 0 A, 1 0 0 Y L
0 0 - 0 A 0 0 - 0 e

suppose that the size of D, 1s M.
One can show that D, D, =1 (supp k xM)

Pt = D&’




When 4, =0
if D.=4, then D=0,
A, 0 0
B)If D, = ? ﬂ;" ?
=0 |y o /1.,(

@I p =|:

° b

then

then

D, =

650




651

Note that 1f
01 0 0] 0 0 0 O]
0 0 1 0 1 O 0 O
D, = : , D, =0 1 0 0
0 0 0 1
0 0 0 O 0 0 1 0]
(0 0 0 0]
01 0 0
then D;D ,=/0 0 1 0
0 0 0 1]
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[Case 4] Suppose that A 1s an Mx/N matrix, when
(1) M <N or
(11) N < M but some column vectors are not linearly independent, |,

the methods introduced in this chapter cannot be a Ephed
(ATA) A
det (ATA) way be zer

We can use the singular value decomposition (SVD) method
introduced 1n Section 8.1 to solve the generalized inverse problem in

Cases 1, 2, 3, and 4.



7.4 Discrete Orthogonal Polynomials
(FHE*T)
[Definition of Discrete Orthogonal Polynomials]

Suppose that there is a set of discrete functions as follows
P |n]= Zcm,k(n)k m=0,1,2
k=0

where (n), is called the falling factorial function:
(n)o = 1, (I’l)1 =n, (72)2 — n(n _1),
(n)k=n(n—1)(n—2) ...... (n—k+1) n« %ﬁ.}/

It

__________________________________________________________

then we call {Pj[n], P,[n], P,[n],
polynomial set within n € [n,, n,] with the weight w[x]

....... } a discrete orthogonal

653
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Note that since

span{(n)y,(n),,(n),,++,(n),,} = span{l,n,n*---,n" |

therefore, P, [n] can also be expressed as a linear combination of 1, »,

n%, ..., n".



[Discrete Legendre Polynomials]

wln]|=1 nel0,N]

The Discrete Legendre Polynomial of Order m

_______________________________________________________

N (N+m+DI(N-m)! . _
D B[n]R[n]=1  @m+DN!) if m=s
h > 0 l'fm;ts
P [n]=1 R[n]zl_zﬁ

n (n), n (n), (n),
[n] 1-6 +6(N)2 P[] 1-12-% —|—30(N)2 20(1\7)3

n (n), _ (n), (n),
P4[n] 1-20-% +9O(N)2 140(]\[)3 7O(N)4

655

(Nl = h (A-)l-n-3)



N=6
14 © })()C[n] ©
0.5 Pl[n] —
| R[] 7]
P,[n]

-1.5

656



[Hahn Polynomials} When a = = -1/2, it is analogous to
Two extra parameters: o, [ the continuous Chebyshev polynomial
on page 319.
+a\(N—-n+
w[n]:(n j( 7 'Bj nel0,N]
n N —n

If o or f1s not an integer, it can still be defined:

I(n+a+1) [(N-n+p+1)
F(n+)I(a+)T(N-n+1)T(S+1)

wn] =

The Hahn Polynomial of Order m

—m,—n,m+a+,b’+l;j§



658

F a,,da,, ',Clp; h . f .
: ergeometric tunction
P g bl,bz,‘“,b ‘ yp g

q’

r a),dy, -, d ial(k)aék)ma;k) i
plq - GIGERIGEA
bbb bOBP b ") k!

.7 q;Z k=0

where a® is called the rising factorial function: —

a® =1

a“ =a(a+1)(a+2) (a+k-1)



discrete

continuous 659

Jacobi polynomials

Laguerre polynomials

Hermite polynomials
(refer to page 322)

o= (0 discrete Legendre

polynomials

o = -1/2 discrete Chebyshev

. analogous
Hahn polynomials >

. , analogous
Meixner polynomials g

. analogous
Krawtchouk polynomials >

Hahn _ discret§
polynomials &~ b ultraspher.lcal
a, B polynomials

(discrete Jacobi
polynomials)

polynomials (I)

o= 1/2 discrete Chebyshev

polynomials (II)
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When A=¢*, b=1,itis analogous

[Meixner Polynomials]

Two extra parameters: 4, b to the continuous  Laguerre
polynomial on page 320.
2 b
win|=4"2 nel0,) bl b :ly ()
-(n-D)
The Meixner Polynomial of Order m 1+ A e?, b 2
-nh -
(_m’_n; \NLV\:I = QV\_- MWDJ e
B [n] =, 5 1
" b,l - Ly % (_x)n
A e = nzz(; n'
Note: When
A=e", b=1
then
. (the same weight function as the continuous
wln]=e Laguarre polynomial)



As shown on the next page, when p = 661

1/2, 1t 1s analogous to the continuous
Hermite polynomial on page 322.

[Krawtchouk Polynomials]

One extra parameter: p

win]=p" (1= p)"” (N j ne[0,N]

n

(Similar to the Binomial distribution)
The Krawtchouk Polynomial of Order m
—m,—n,

YA
P

Pm[n]: 2E
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il=p =) (7]

n
Note: When
p=1/2

then

Moreover, when N — o

lim N ~ 2% exp _(n—N/2)2
N-owo| p _Q/Nﬂ-/z N/2
which 1s near to the weight function of the continuous Hermite

polynomial. Therefore, the Krawtchouk polynomial 1s also called
the discrete Hermite polynomial.
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+4%-- Approximation Using Other Norms

Until now, we discuss the approximation problem based on the L, norm,
that 1s, to find x that can minimize

y - Ax|

Hy — AXH = \/Z(y[n] — Z Aln,m]x j

n=l1

However, how do we minimize the approximation problem based on
the L, norm, that is, to find x that can minimize
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The problem of minimizing

ly—Ax|,

1s always hard to solve if o # 2.

However, when o > 1, ||y — Ax|| , 1s convex, which means that ||y — Ax]|,
has only one local minimum (i.e., local minimum = global minimum).
Therefore, many numerical methods (the simplex algorithm, Golden
search, gradient descent, Newton’s method, .....) can be applied to

minimize |y — Ax||,. We describe the general method to minimize
ly — Ax||, when a > 1 as follows.

[t 1s even harder to minimize ||y — Ax||, when a < 1.



(Problem): Determine

X =argmin|y — Ax|

[t means that to find x that can minimize ||y — Ax||,

Suppose that

size(A) = NxM, length(y) =N, length(x) =M
M<N

(Step 1): Imtial: x=0, E,=]|yl,, c=1, #y=0

Set A (the threshold for error convergence)

Set T (the upper bound of times for no error reduction)

665
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(Step 2): Choose the feasible direction as follows.

(Method 1): Assign the feasible direction b as the projection

of y — AX on
Span(Al,Az, ...... :AM)
where A, A,, ..., A,y are columns of A.

(Method 2): If the projection 1s 0 or ¢ = 0 (1.e., the adjusting step
in the previous iteration is zero)
Generate d,, randomly.
Then, set the feasible direction b as

M
b=>d,A, /A,
m=1

(Step 3): Find ¢ to minimize ||y — A(x + ¢b)||,
¢ =argmin |y — A(x+cb)|_

Then, update x as
X<X+cle,e, e, ] if b=eA +e,A,+-e, A,
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(Step 4): Determine £, = ||y — Ax||,,. If

E,—E <A
then set

try < try+1
Otherwise, set try = 0.

(Step 5): If try < T
Set £, = £, and return to (Step 2)
Iftry>T:

The process 1s terminated and the solution is obtained.



Flowchart

.. 668
Initial: x=0

|

Assign the feasible direction b as the projection

» of y — Ax on span(Columns of A)
(If the projection is 0, assign b randomly)

Find c iteratively to minimize ||y — A(x + cb)||,

|

Update x by x =x+c|e,e,, -, e,]
\if b=eA, +e,A,+ e, A,

A [I_L\“‘.N‘j e~ ‘:AM]

Whether the error does not decrease for T times

No

Yesl

Obtain the solution of x



[Example 1] Suppose that 669

y=[2 3 3 4 5 4 5]
Try to express y as x,b, + x,b, + x;b; where
b,=[1 1 1111 1j
b,=[1 2 3 4 5 6 7]
b,=[1 -1 1 -1 1 -1 1]

such that L, horm

ly=xb, —x,b, —x;b,| is minimized
8, © .%‘e = _
(Solution): (Step 1): Initially, set MiAcIme %\7["\1 ’X,hﬂ"l X;’olvs]
[%,%,,%,]=[0,0,0] ~% bl |

Ey =y =xb; —x,b, —x;bs], =26



(Step 2): 670
Then, we find the projection of y — Ob, — Ob, — Ob; =y on Span(b,, b,, b;):

bl’ b27 b3 al, az, a3
Gram-Schmidt

=L a,= 1_[3 2 -1 01 23

alﬁ[lllllll] 22ﬁ[ ]
1

a.= L [3 —4 3 -4 3 —4 3

WL ]
Since

> y[n]a,[n]=9.2871 Y y[n]a,[n]=2.4568

> y[n]a;[n]=0.1091
the projection of y on Span(by, b,, bs) 1s

9.2871a, +2.4568a, +0.1091a, =1.8512b, +0.4643b, +0.0417b,
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Therefore, we choose the feasible direction b as

b=1.8512b, +0.4643b, +0.0417b,

:[2.3571, 2.7381, 3.2857, 3.6667, 4.2143, 4.5952, 5.1429]
Newtou's e Heod
Caololelﬂ seavch

(Step 3): Find ¢ to minimize ||y — A(x + ¢b)||,
B grochent dlescnd

30

ly — A(x + cb)||,

15 -

10 -

5+

0 O.IZ O.I4 O.IS O.IB ’; 1?2 1.l4 1}6 1}8 2
c
The solution is ¢ = 0.9722. Then, update x as

X < x+0.9722b =[1.7998, 0.4514, 0.0405]
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(Step 4): Determine the residue

y —Ax =[-0.2917, 0.338, —0.1944, 0.4352, 0.9028, —0.4676, O]

and calculate the error
E, =y — Ax||; = 2.6296

(Step 5): Return to (Step 2)

After 60-110 times of iterations, we obtain

x=[1.75, 0.5, —0.25]
y -Ax=[0,0,0,0,1,-1, 0]

ly — Ax|l, =2
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8. Component Analysis

Section 8.1 Singular Value Decomposition (SVD)

Section 8.2 Principal Component Analysis (PCA)
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8.1 Singular Value Decomposition

If A is a square matrix, then we can perform eigenvector-eigenvalue
decomposition for A:
A =EDE"

A=Aef +Aef) +-+ A4, e fay + Avenfn

WhereE: E-‘ haw 1"fe»/ norma frzed

Y, —
_ v -1 _ H _T 'P, H
E=[e, e, - ey], E'=[f f, - fy] = .
f2
Ae =1 e 5
|
If |4, ] is the largest, then L ]
A e I

1s the most important component of A.
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8.1.1 Singular Value Decomposition Process

Q: How do we perform eigenvector-eigenvalue decomposition for A
if A is not a square matrix?

size(A)=MxN, M=#N

LXx2
We can apply the singular value decomposition (SVD) process as
follows. f 4ﬁ_ SVP resu H;
‘# eigen vector - %G\Valut
(1) Generate B and C decompocidion veculd
B=AHA C=AA"
252 x5

(Note): Since B is an Nx/N square matrix,
C 1s an MxM square matrix,
therefore, it 1s possible to derive the eigenvector sets for B and C.
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B=A"A C=AA"

(2) Perform Eigenvector-Eigenvalue Decomposition for B and C
B=VDV" C=0QU"

(Note): Since BH = B, CH = C, B and C have orthogonal eigenvector-

sets and U and V are orthogonal matrices.

(1) It 1s proper to[ﬁormalizaﬁ and V properly such that

viv - | U0 =1
then V"‘-\IH v-a, OH
B =VDV" Cc=0QU"

(11) It 1s proper to sort the eigenvalues of B and C from large to small.

The eigenvectors are also sorted according to eigenvalues.



(3) Then, we calculate
5X2

5¥5

52

MIN N ]
NXN
(L
S, =U"AV_

S, will be an MxN diagonal matrix

S, [m,n]=0 if m#=n

(4) Varying the sign of S; and U

S[m,n]=|S,[m,n]

-
U[m,n]

(Note): With sign change,

(m,n]=U[m,n]

it §,[n, n] = 0,

~U[m,n] if S[n, n] <0,

S = EH AV _and

are still satisfied.

C=UuQu?

677

kckam ge the 59“ 0"@ nth column



$= vHAV 678

(5) Then, the SVD of A is osvM= uUyHavvH =T AT
A = USV! =A
eigenvector matrix diagonal matrix, eigenvector matrix
of AA", size: MxM size: MXN of AHA, size: NxN
If
U=[u1 u, - uM], V=[V1 vV, - VN]
then * Note 1 Um , Vi shond Ve Novwmalta edl
A= Slulvf + s2u2v§ o4 sK_luK_lvg_1 + SKHKVE
/ S, 28, 228 28y
where K = min(M,N)
most second

significant  significant s, =S[n,n]



itM<N

s, 1s call the singular value

679
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[Example 1] Perform the SVD for the following matrix

o
A=|-1 1
__1 1_
(Solution): First, we determine - cH
B=B™  BLAA)Y, gyt 2 0 0]
B=AHA:{6 2} A c=aA"=|0 2 2
2 6] 0 2 2

Then, we perform eigenvector-eigenvalue decomposition for B and C:

el e

B=VDVH" where V=

1/2 —1/42 0 4



c=U0QUu"

where [ =

10 0
0 1/42 1/42
0 1/42 -1/42]

8
0
0

S B~ O

oS O O

681

Note: The eigenvectors should be (1) normalized and (i1) sorted

according to the magnitudes of the eigenvalues.

Then,




Then, —‘\/g‘ 0 -
S=| 0 |2
0 0

/8

0
O

owo

682

Since S,[2, 2] < 0, we change the sign of the 2" column of U and obtain

1

U=|0
0
Therefore,
A =USVY
1 0 0
U=0 -1/v2 1/42

~1/V2 -1/+2]

0
1/2

~1/42

Note |

where

RE

0
0

OI\)O

E

1/2

1/J2 —1/42

1/2

|



Note that 083

. H H

SR 0
A=Blo||-L - }2 ~1/2 { 1 ‘1}
[ﬁ V2 V2 2
0 —1/42
principal component minor component
> 27 T 0 O
0 O -
0 04 ~I [ <

L —
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(Note):

(1) In fact, the eigenvalues of B and C has a close relation to the
| singular values[of A.

Cewrppse 1B
SHS=D SsH=0

S*[n,n]= D[n,n]=Q[n,n]

Since
A =USVY

B=A"A = VSHYAKSVH = @vﬂ

R e‘%z""”‘\“e RUY

ok ©
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(Note):

(2) Even when M = N (i.e., A 1s a square matrix), the SVD may not be
the same as the eigenvector-eigenvalue decomposition.

For the SVD, U and V are both orthonormal matrices and the singular
values are non-negative.

However, for a square matrix, the eigenvectors may not be orthogonal
and the eigenvalues can be negative (even complex).

(3) Moreover, since U and V are usually different and VH = U-!, one
cannot use the SVD to compute the power of a matrix.



686
[Example 2] Determine the eigenvector-eigenvalue decomposition

and the SVD of A.
2 -1
A =

(Solution): The eigenvalues of A are 2 and -1.

The eigenvectors corresponding to 2 is [1 0]!
The eigenvectors corresponding to -1 is [1, 3]!

I

Therefore,
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To perform SVD for A,
4 2 5 1
B=A"A= C=AA" =
-2 2 1 1
v D vH

1 0.8507  0.5257 ]| 5.2361 0 0.8507 -0.5257
1-0.5257 0.8507 0 0.7639 || 0.5257 0.8507

~

U ] Q oY
_{0.9732 —0.2298} 52361 0 }{0.9732 0.2298}

7102298 09732 || 0  0.7639 || -0.2298 0.9732
A change agn e <0,874 0
{0.9732 —O.2298}HA_O.8507 0.5257__{2.2882 0 %’
i 0

0.2298 0.9732 -0.5257 0.8507 | 0 —0874
U S ] v H
{0.9732 0.2298}{2.2882 0 {0.8507 -0.5257}

0.2298 -0.9732 0 0.8740 ]| 0.5257 0.8507

()

chame
s‘g h
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8.1.2 Generalized Inverse Using the SVD

Suppose that the SVD of A is
A=USV"

Then the generalized inverse of A 1s
AT =vSUu"t

where
S*[n,n]=1/8[n,n] if S[n,n]=0

S*[n,n]=0 if S[n,n]=0

Size(S+):NxM if size(S)=M xN
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(Proof): A J/ A
AATA HUSVIVS'U = USS*SVH

If
S, =S'S

then
S,[n,n]=1 if S[n,n]#0 S,[n,n]=0 if S[n,n]=0

Therefore,
S=SS'S
AATA=USV' =A
(1) AA"A = A is satisfied.
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Note: The generalized inverse derived from the SVD is in fact the

pseudo inverse since
2) ATAAT=A"
(3) (AA*)" =AA’
+ H +
4) (A'A) =A"A
are all satisfied.

(Try to prove them)
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[Example 3] Determine the generalized inverse of the following matrix

(2 2 2]
43%3 matrix
A= 2 2 2 but columme arve hot
1 -2 1 Tv\o(cpcp.dcp,-e
-1 2 -1

Note: Since the 1%t and the 3™ columns are dependent, we cannot
use the method of

(ATA) AT
to determine the generalized inverse. Instead, we should apply the
SVD method.

A =USsvH At =vVSTUH
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(Solution): Since 2 2 2
|2 22
1 2 1
-1 2 -1
o 410 12 12 0 0
B=A"A=|4 16 4 c-aan=|'2 1290
0 0 6 -6
10 4 10| 0 0 6 6
B=vDV" i
1/3 1/46 0 1/4/2 24 0 0
where V=[1/+3 -2/46 0 D=[0 12 0
/33 1/46  -1/42 0 0 0

)\ nermal 1)
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C=UAU where

1/~2 0 0 1/\2 24 0 0 0]
ﬁ;_UJE 0 0 -1/2 N 0 12 0 0
0 1/J2 1/42 o 0 0 00
0 -2 N2 0] |00 0 0]
Then - _
J24 0 0
S, =0"av=| 0 V120
0O 0 0
0 0 0]

Since all entries of S, are non-negative,

S=8§, U=U



/N2 0 0  1/42 ] 094
/20 0 —1/2

A =USV" U=
0 1/42 1/42 0
- Lo -2 12 0
24 0 0 ] ]
1/\3 1/46 0 1/42
| 0o Vi2 0
4a| 0 0 0 V=|1/3 2/46 0
o 0 0 /3 1/46  —1/42
1/v24 0 0 0]
A = VSTUH St=| 0 1/412 0 0
— s ) 0 0 0

(1/12 1/12 1/12 -1/12°
A" =1/12 1/12 -1/6 1/6
1/12 1/12 1/12 -1/12 ]
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8.2 Principal Component Analysis

Principal component analysis (PCA) 1s to find the principal
component of a set of data.

Principal components: Corresponding to larger singular values for SVD
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[Process of PCA]

Suppose that there is a set of data. The number of data is M and each
data has the length of V.

Xm — [xm,l xm,2 xm,3 o xm,N:I
m=1,2,....M
(In usual, M >> N)

M
- ¥ = 1
(1) First, we subtract each entry by X, = i n;xm,n

am — I:am,l am,2 am,3 o am,N:I



(2) Then, construct an MxN matrix A: 697

a, ay G 4y,
a a a s a
2 2,1 2,2 2,n
A = =
_aM_ _am,l am,2 Tt am,n_

(3) Then, perform SVD for A
- second (N-1)®h Nth
A =USV important ~ important important

(4) Then / / /

. H H H H
A=su, v, +5,U,V, +---+ Sy Ung Vg TSvUN YN

where s, =S|n,n]
most
important U=[u1 u, - uM], V=[V1 vV, - VN]



If we want to reduce the component from N to L due to the
consideration of compression or feature selection, then

= ju— H H e o o H
A=A, =su v, +5U,V, +---+s U, v

Note:

N H H qH r— -
Xy =€, Vi +CpnVs +---+cm,LVL+[x1 X, e xL]

where Coun =S, U, |M
m,n n n[ ]\mth entry Oflln

6938

H _H H . .
Vi ,Vy, o,V can be viewed as the most important L axes

In general,
H H H - - _

¢, € (—o0,0)
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Main Applications of the PCA

(1) Dimensionality reduction (i.e., feature selection) for pattern
recognition and machine learning

(2) Data compression
(3) Data mining
(4) Identifying the principal axis of an object in an image

(5) Line approximation
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Example of PCA

3. ERE _HREE AENERHEBREEREIE -HER LUXESHES &M
TR B R — S BUR AV R - TEO—H 4% SEEEIH - RENESR
e —HERENZEREGER/?

(1) y=2 ‘21 [ lod
@) y=-2 2 af
(3) y=—x []} EEEEE N
) =5 2 e
() y=-3 ¥ £
5

5-4-3-2-10123435

From 2022 < 5 ¢ & F %
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[Example 1] Suppose that there are 5 points in a 2-D space and their
coordinates are

(7,8), (9,8), (10, 10), (11,12), (13,12

15 T

Try to find a line that can approximate
these points. e
(Note): M=5,N=2 )
(Solution):
First, since the mean of these 5
points is
(10) 10), UL’I é 1IU 15

we subtract these points by (10, 10) and obtain

(-3,-2), (-1-2), (0,0), (1,2), (3,2)



(-3,-2), (-1-2), (0,0), (1,2), (3,2)

Then, we construct a 5x2 matrix A:

Then, we perform SVD for A:
A=USV"

) U,
—0.6116

—-0.3549
0
0.3549

| 0.6116

N2
0.3549

—-0.6116
0
0.6116
—0.3549

0

0
1
0
0

0.7060 |
—-0.0393

—-0.0393

0.7060 |

US - S,\I\; S‘ul]

A: S;u\vl'-‘* Se Ua V‘H

S =

2

£

5.8416

0
0
0
0

Vi
0.7497

0.6618

0
S
1.3695
0
0
O —
Vs
~0.6618
0.7497




Then, A can be expanded by 703

[ —0.6116 ] [ 0.3549 |
—0.3549 —0.6116
A=58416 0 |[0.7497 0.6618]+1.3695| 0  [[-0.6618 0.7497]
0.3549 0.6116
| 0.6116 | | —0.3549
principal component secondary component
Therefore,
(—0.6116] [ —3.5726 ]
—-0.3549 -2.0733
A=58416] 0 |[0.7497 0.6618]= 0 |[0.7497 0.6618]
0.3549 2.0733
| 0.6116 | | 3.5726 |




-
-
112

11 12
13 12]

[ —3.5726 ]

—-2.0733
0
2.0733

| 3.5726 |

Approximation line:

[10 10]+¢[0.7497 0.6618]

¢ € (-00, 00)

[0.7497 0.6618]+

10
10
10
10
10

10
10
10
10
10

1
10

15

704
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[Simplification for Computation]

Suppose that we only want to find the most important L axes of the data.
(It 1s usually the case for practical applications).

If M 1s very large, then the MxM matrix U 1s unnecessary to be
computed. One only has to perform eigenvector-eigenvalue
decomposition for B and obtain the NxN matrix V:

B=AYA B=VDV!

If D[n, n] 1s larger than other diagonal entries of D, then the nth column
of V 1s the principal axis.
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4%+ — Some Common Mathematical Notations

(1) Commutator
[A,B]=AB-BA

(2) Trace

N

tr(A)=ZA(n,n)

n=1

(3) Bras and Kets Notations -, -

b,
. « 7 b A and B are column vectors
(A|B)=|a; a, - a 2 °
[ 1/2 N] : \B
AH _bN _
b,
% % % b2
<A‘_|:a1 a4, aN] B)= :
| by |
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(4) sup: supremum (the least upper bound > } £z J)

sup{x|l<x<2}=2
sup{(~1)" ~1/n|neNj=1

(5) inf: infimum (the greatest lower bound > ™ & %} )
inf{x|1<x<2}:1

inf{e_x|xeR}=O

(6) card: the number of elements 1n a set

card ({x,y})=2
card({xz,yz,xy,x,y,l}) =6



