A survey on removing haze by discrete wavelet transform

I-Hsiang Chen

Advisor: Sy-Yen Kuo

Paper Survey Dec 3, 2020

Dependable Distributed Systems and Networks Laboratory
Graduate Institute of Electrical Engineering

- Introduction
- Atmospheric Scattering Model
- U-Net
- Discrete Wavelet Transform
- WAVELET U-NET AND THE CHROMATIC ADAPTATION TRANSFORM FOR SINGLE IMAGE DEHAZING
- MULTI-SCALE FEATURE AGGREGATION NETWORK WITH WAVELET STRUCTURE SIMILARITY LOSS FUNCTION FOR SINGLE IMAGE DEHAZING
- Conclusion
- Reference

- Introduction
- Atmospheric Scattering Model
- U-Net
- Discrete Wavelet Transform
- WAVELET U-NET AND THE CHROMATIC ADAPTATION TRANSFORM FOR SINGLE IMAGE DEHAZING
- MULTI-SCALE FEATURE AGGREGATION NETWORK WITH WAVELET STRUCTURE SIMILARITY LOSS FUNCTION FOR SINGLE IMAGE DEHAZING
- Conclusion
- Reference

Introduction

- Issue: Make hazy images clean and find the best transmission matrix
- Related work: discrete wavelet transform, U-net, dehaze
- Challenge: low contrast, faint color and shifted luminance

- Introduction
- Atmospheric Scattering Model
- U-Net
- Discrete Wavelet Transform
- WAVELET U-NET AND THE CHROMATIC ADAPTATION TRANSFORM FOR SINGLE IMAGE DEHAZING
- MULTI-SCALE FEATURE AGGREGATION NETWORK WITH WAVELET STRUCTURE SIMILARITY LOSS FUNCTION FOR SINGLE IMAGE DEHAZING
- Conclusion
- Reference

Atmospheric Scattering Model

- Image dehazing model : I(x)=J(x)t(x)+A(1-t(x))
- Transmission function : $t(x) = e^{-\beta d(x)}$

I(x): observed image

J(x): clear image

A: global atmospheric light

t(x): medium transmission

 β : scattering coefficient

d(x): scene depth

ill-posed problem

• Image dehazing model : I(x)=J(x)t(x)+A(1-t(x))

How to find A, t(x)?

J(x)

- Prior-based: color attenuation prior, dark channel prior, etc.
- Learning-based: Lightweight model, multi-scale model, U-Nets, etc.

- Introduction
- Atmospheric Scattering Model
- U-Net
- Discrete Wavelet Transform
- WAVELET U-NET AND THE CHROMATIC ADAPTATION TRANSFORM FOR SINGLE IMAGE DEHAZING
- MULTI-SCALE FEATURE AGGREGATION NETWORK WITH WAVELET STRUCTURE SIMILARITY LOSS FUNCTION FOR SINGLE IMAGE DEHAZING
- Conclusion
- Reference

U-Net

Bouns

In this class,

which method can be used for down-sampling and preserve high frequency information and low frequency information on images?

- Introduction
- Atmospheric Scattering Model
- U-Net
- Discrete Wavelet Transform
- WAVELET U-NET AND THE CHROMATIC ADAPTATION TRANSFORM FOR SINGLE IMAGE DEHAZING
- MULTI-SCALE FEATURE AGGREGATION NETWORK WITH WAVELET STRUCTURE SIMILARITY LOSS FUNCTION FOR SINGLE IMAGE DEHAZING
- Conclusion
- Reference

33

Discrete Wavelet Transform

Discrete Wavelet Transform (DWT)

The discrete wavelet transform is very different from the continuous wavelet transform. It is simpler and more useful than the continuous one.

(Scaling & Convolution)

$$x_{L}[n] = \sum_{k} x[n-k]g[k] \qquad x_{1,L}[n] = \sum_{k} x[2n-k]g[k]$$

$$x_{H}[n] = \sum_{k} x[n-k]h[k]$$
 $x_{1,H}[n] = \sum_{k} x[2n-k]h[k]$

2-point Haar wavelet

34

$$x_{1,L}[n] = \sum_{k} x[2n-k]g[k]$$
 $x_{1,H}[n] = \sum_{k} x[2n-k]h[k]$

$$x_{1,H}[n] = \sum_{k} x[2n-k]h[k]$$

例子: 2-point Haar wavelet

$$g[n] = 1/2$$
 for $n = -1, 0$

$$g[n] = 0$$
 otherwise

then

$$x_{1,L}[n] = \frac{x[2n] + x[2n+1]}{2}$$
(兩點平均)

$$x_{1,H}[n] = \frac{x[2n] - x[2n+1]}{2}$$
(兩點之差)

36

2D DWT

2-D 的情形

Sample

- Introduction
- Atmospheric Scattering Model
- U-Net
- Discrete Wavelet Transform
- WAVELET U-NET AND THE CHROMATIC ADAPTATION TRANSFORM FOR SINGLE IMAGE DEHAZING
- MULTI-SCALE FEATURE AGGREGATION NETWORK WITH WAVELET STRUCTURE SIMILARITY LOSS FUNCTION FOR SINGLE IMAGE DEHAZING
- Conclusion
- Reference

WAVELET U-NET AND THE CHROMATIC ADAPTATION TRANSFORM FOR SINGLE IMAGE DEHAZING

Hao-Hsiang Yang ¹, Yanwei Fu ²

1: Graduate Institute of Electrical Engineering, National Taiwan University, Taiwan

2: School of Data Science, Fudan University, Shanghai, China

IEEE International Conference on Image Processing (ICIP). IEEE, 2019

WAVELET U-NET AND THE CHROMATIC ADAPTATION TRANSFORM FOR SINGLE IMAGE DEHAZING

- Issue: edges and colors are two key factors to obtain better dehazed images, Clear edges and balanced color make the dehazed images look natural and detailed.
- Proposed: two-stage and end-to-end network.
 - Wavelet U-Net
 - Up-sampling: DWT
 - Down-sampling: IDWT
 - Chromatic adaptation transform
 - implemented by convolutional layers mathematically to enhance images

Wavelet U-Net

2D-DWT, 2D-IDWT

$$\Phi_{LL}(x,y) = \phi(x)\phi(y)$$

$$\Psi_{LH}(x,y) = \phi(x)\psi(y)$$

$$\Psi_{HL}(x,y) = \psi(x)\phi(y)$$

$$\Psi_{HH}(x,y) = \psi(x)\psi(y)$$

 $\phi(x)$ means low – pass $\psi(x)$ means high – pass

 ϕ_{LL} : scaling ψ_{LH} , ψ_{HL} , ψ_{HH} : wavelet

\$ 20- Haar Wavelet

Fig. 1. The illustration of DWT and IDWT, where arrows mean down-sampling and up-sampling.

Wavelet U-Net

Fig. 2. Overview of the proposed wavelet-U-net with the chromatic adaption transform for single image dehazing. The digits under the blocks mean the numbers of channels and digits in parentheses mean concatenated layers.

Chromatic adaptation transform

Target: calibrate luminance and color

(F' is 3x1x1 convolutional kernal)

Color Corrected Mode

 $\begin{bmatrix} R' & G' & B' \end{bmatrix}^T = F \begin{bmatrix} R & G & B \end{bmatrix}^T$

$$F = \begin{bmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \gamma \end{bmatrix} \quad \text{(light-weight matrix)}$$

$$\begin{bmatrix} R' \\ G' \\ B' \end{bmatrix} = \begin{bmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \gamma \end{bmatrix} \cdot \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$= \begin{bmatrix} \alpha - 1 & 0 & 0 \\ 0 & \beta - 1 & 0 \\ 0 & 0 & \gamma - 1 \end{bmatrix} \cdot \begin{bmatrix} R \\ G \\ B \end{bmatrix} + \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$= F' \cdot \begin{bmatrix} R & G & B \end{bmatrix}^T + \begin{bmatrix} R & G & B \end{bmatrix}^T = F' \cdot x + x \quad \text{(residual module)}$$

Evaluation

PSNR

$$PSNR = 10 \cdot \log_{10} \left(rac{MAX_I^2}{MSE}
ight) = 20 \cdot \log_{10} \left(rac{MAX_I}{\sqrt{MSE}}
ight)$$

SSIM

$$ext{SSIM}(x,y) = rac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

Table 1. Quantitative SSIM and PSNR on the synthetic RE-SIDE dataset.

	[2]	[10]	[13]	[4]	[14]	Ours
PSNR	16.58	17.72	18.55	21.42	18.41	24.39
SSIM	0.818	0.768	0.826	0.882	0.848	0.901

Qualitative dehazed results

Fig. 3. Qualitative dehazed results on the synthetic dataset by comparing with state-of-the-art results.

- Introduction
- Atmospheric Scattering Model
- U-Net
- Discrete Wavelet Transform
- WAVELET U-NET AND THE CHROMATIC ADAPTATION TRANSFORM FOR SINGLE IMAGE DEHAZING
- MULTI-SCALE FEATURE AGGREGATION NETWORK WITH WAVELET STRUCTURE SIMILARITY LOSS FUNCTION FOR SINGLE IMAGE DEHAZING
- Conclusion
- Reference

MULTI-SCALE FEATURE AGGREGATION NETWORK WITH WAVELET STRUCTURE SIMILARITY LOSS FUNCTION FOR SINGLE IMAGE DEHAZING

Hao-Hsiang Yang ¹ ,Chao-Han Huck Yang ² Yi-Chang James Tsai ²

1: ASUS Intelligent Cloud Services, Taiwan

2: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020

MULTI-SCALE FEATURE AGGREGATION NETWORK WITH WAVELET STRUCTURE SIMILARITY LOSS FUNCTION FOR SINGLE IMAGE DEHAZING

- Issue: Focus on multi-scaling and high frequency feature
- Proposed: Y-Net, W-SSIM
 - Y-Net
 - This network reconstructs clear images by aggregating multi-scale features maps
 - Wavelet Structure SIMilarity (WSSIM) loss function
 - DWT divide the image into differently sized patchs with different frequencies and scales
 - Accumulation of SSIM loss of various patches with respective ratios

Y-Net

Fig. 1. The overview of our proposed Y-net. The clear image is composed of multi-scale feature maps from the hazy image. The digits under the blocks mean the numbers of channels.

Wavelet SSIM loss

- Formulate : $I^{LL}, I^{LH}, I^{HL}, I^{HH} = DWT(I)$
- Patch Weights: r low frequency patch, (1-r) high frequency patch

Fig. 2. The process of the DWT and the transformed example: (a) The process of the DWT, where downward arrows mean down-sampling. (b) The original image. (c) The result of the twp-times DWT. (d) The ratios for different patches.

Set: r=0.4

Wavelet SSIM loss

- Algorithm : $I_{i+1}^{LL}, I_{i+1}^{LH}, I_{i+1}^{HL}, I_{i+1}^{HH} = \text{DWT}(I_i^{LL})$
- SSIM: SSIM $(x,y) = \left[l(x,y)^{lpha} \cdot c(x,y)^{eta} \cdot s(x,y)^{\gamma}
 ight]$

$$l(x,y) = rac{2\mu_x \mu_y + c_1}{\mu_x^2 + \mu_y^2 + c_1}$$

$$c(x,y) = rac{2\sigma_x\sigma_y + c_2}{\sigma_x^2 + \sigma_y^2 + c_2} \;\; \Longrightarrow \; ext{SSIM}(x,y) = rac{(2\mu_x\mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

$$s(x,y) = rac{\sigma_{xy} + c_3}{\sigma_x \sigma_y + c_3}$$

(Luminance, Contrast and Structure Similarity)

Wavelet SSIM loss

```
Input: Two images I, J, the ratio for
             multi-frequency r and iterative times n
    Output: loss = L_{W-SSIM}(I, J)
 1 I_0^{LL}, J_0^{LL} = I, J;
 2 Tensor loss = 0;
 3 x = r^2, y = r(1-r), z = (1-r)^2 for
   i = 1; i < n; i + + do
4 | I_i^{LL}, I_i^{LH}, I_i^{HL}, I_i^{HH} = DWT(I_{i-1}^{LL})
5 J_i^{LL}, J_i^{LH}, J_i^{HL}, J_i^{HH} = DWT(J_{i-1}^{LL})
6 loss += L_{SSIM}(I_i^{LH}, J_i^{LH}) \cdot y + L_{SSIM}(I_i^{HL}, J_i^{HL}) \cdot y + L_{SSIM}(I_i^{HH}, J_i^{HH}) \cdot z
        [x, y, z] = x \cdot [x, y, z]
 7 end
 8 loss+=L_{\text{SSIM}}(I_i^{LL},J_i^{LL})\cdot x
 9 return loss
```

Algorithm 1: W-SSIM Loss

Evaluation

PSNR

$$PSNR = 10 \cdot \log_{10} \left(rac{MAX_I^2}{MSE}
ight) = 20 \cdot \log_{10} \left(rac{MAX_I}{\sqrt{MSE}}
ight)$$

• SSIM

$$ext{SSIM}(x,y) = rac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

Table 1. Quantitative SSIM and PSNR on the synthetic RE-SIDE dataset.

	PSNR	SSIM
CAP [2] (prior-based)	23.02	0.865
AOD-Net [7] (learning-based)	23.92	0.875
MBE [5] (prior-based)	18.83	0.790
W U-net [11] (learning-based)	24.81	0.910
Ours	26.61	0.947

Evaluation

FADE : fog aware density evaluation

Table 2. Quantitative FADE on restored images.

	River	People	Willow
CAP [2]	1.41	0.410	0.496
AOD-Net [7]	1.19	0.373	0.391
MBE [5]	0.440	0.184	0.184
W U-net [11]	1.51	0.647	0.562
Ours	1.77	2.37	0.592

Ablation Study

Table 3. SSIM and PSNR results of all loss functions applied for the purposed network.

	L_2	$L_{\rm SSIM}$	L_{W-SSIM}	$L_{W-SSIM} + L_2$
PSNR	26.31	26.27	26.50	26.61
SSIM	0.925	0.929	0.939	0.947

Qualitative dehazed results

Fig. 3. Dehazed results in River, People and Willow.

- Introduction
- Atmospheric Scattering Model
- U-Net
- Discrete Wavelet Transform
- WAVELET U-NET AND THE CHROMATIC ADAPTATION TRANSFORM FOR SINGLE IMAGE DEHAZING
- MULTI-SCALE FEATURE AGGREGATION NETWORK WITH WAVELET STRUCTURE SIMILARITY LOSS FUNCTION FOR SINGLE IMAGE DEHAZING
- Conclusion
- Reference

Conclusion

- W-UNet and chromatic adaptation transform helpful in improve constrast.
- Y-Net and W-SSIM make more edge detail with multiscaling
- Discrete Wavelet Transform can perfectly replace down sampling and up sampling.
- Discrete Wavelet Transform can remain more high frequency feature whenever in loss-term or Network

- Introduction
- Atmospheric Scattering Model
- U-Net
- Discrete Wavelet Transform
- WAVELET U-NET AND THE CHROMATIC ADAPTATION TRANSFORM FOR SINGLE IMAGE DEHAZING
- MULTI-SCALE FEATURE AGGREGATION NETWORK WITH WAVELET STRUCTURE SIMILARITY LOSS FUNCTION FOR SINGLE IMAGE DEHAZING
- Conclusion
- Reference

Reference

- Ju, M.Y.; Gu, Z.F.; Zhang, D.Y. Single image haze removal based on the improved atmospheric scattering model. Neurocomputing 2017
- Olaf Ronneberger, Philipp Fischer, Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer, LNCS, Vol.9351: 234--241, 2015
- H.-H. Yang and Y. Fu, "Wavelet U-net and the chromatic adaptation transform for single image dehazing", Proc. IEEE Int. Conf. Image Process. (ICIP), pp. 2736-2740, Sep. 2019.
- Hao-Hsiang Yang, Chao-Han Huck Yang, and YiChang James Tsai. Y-net: Multi-scale feature aggregation network with wavelet structure similarity loss function for single image dehazing. In ICASSP 2020-2020 IEEE (ICASSP), pages 2628–2632. IEEE, 2020

Thanks for your listening!