235
VII1I. Motions on the Time-Frequency

Distribution ' f Q
|

Fourier spectrum 5 1-Dform > ¥ 3 = f&¥ s i@ & &% 25 !

. J27ft T — —
@ Modulation e x(O)——>X( - 1y) /\ /,\ > f lalX(af)

@ Scaling x(t/a)i)|a|X(af) ~« (-(/Q) - [a) ){(4‘3)
(VAN =>/X_.,

Time-frequency analysis = 2-D > & 2-D T & 5 5 7 5 e d & %)

(1) Horizontal shifting (2) Vertical shifting

chear (B¥ £)
(3) Dilation = S(almg, (4) Shearing w7 —
(5) Generalized Shearing (6) Rotation ” FT
_— ¥
(7) Twisting ra W

LT 8 VZA - jﬁ

¢ -2



8-1 Basic Motions

(1) Horizontal Shifting

x(t—t,) = S (t—t,, [)e /> STFT, Gabor
—>W.(t—1,,[) , Wigner

(2) Vertical Shifting

e x(t) > S_(t, f - /) STFT,Gabor
""“"““*“" SW.(t,f—f) ,Wigner

A4)

4;

("LO IP")

M (3.4) em

5, D

L

>+

t
A (t-3)
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(3) Dilation (scaling) ovl 0\, <) ?

1

|a]

x5~ S (L, af) ,STFT,Gabor
a a

S
N

SPS
=
i

I

S w.(~,af) ,WDF
a



/—'— ~
mstontaneous Pveqwhcy = &“L @:}'(@, Jn-R
(4) Shearing / s | JAS
(?) jmat® (1) ! /-——-;\/“ 2<0 (1o, A
x(t)=e y 4 (_,.,_q. — gl
S, /)= Sy(f,f—_qL,STFT,Gabor ?ﬁ,}t ;u\‘%&{' —\9
I/V?C(l"f) = Wy(t,f—at) ,WDF , "F

A | 4
8x(7,0)= Sy (T,-aT) l A —7
2 S
j

CPA%C ZA.-D F'€$8£’ ‘l’VGu;‘FDV\M (ﬁ"\’ﬂ,‘f’@g) — |

x(t) = e @ % y(t) (* means convolution) 20V

S.(t.f)=S,(t—af,f),STFT,Gabor gj;‘“‘:g_”g‘,'c‘f ov 6<o )
A W(t af, f) , WDF ” N

X(0)- I-T(e*" %) YC®) =47 A€ Y(F)

-t

3 42
ety et -
eME > g™ ¥ 2o
IR AT

*
637"% —A5a e ot
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(Proof): When x(¢) = o7t (1),

w.(t.f)= [ x(t+7/2)x (t—7/2)e”*" dr

o —00

_ 0 ejﬂa(t+2'/2)2e_j;m(t—r/z)zy(t+ 2-/2));* (t—f/z)e_jzﬂrfdz-

o —00

— " eﬂ”"”y(t+r/2)y*(t—r/Z)e‘jz”deT

o —00

(® OO

= y(t+r/2)y*(t—r/2)e_j2“(f_“”df

o —00

=W, (t,f —at)
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(5) Generalized Shearing

x(0)=¢/"y(r) R E 1 :ﬂw /
= k-
Thstandaneous A l(.(_’k-l—F o £ %1&2—2'6 +6

P(t) = kzz(;akt" $veq . - %[ = e"\'B‘
£ AE=€ 7 vy

S.(t.f)=S,(t.f - z."q“-d‘ $TFT.Gabor w = it

W) =W, 0, - gkf WWDF TR T

(4= '?nf bk‘fkdt
J. J. Ding, S. C. Pei, and T. Y. Ko, “Higher order modulation and the

efficient sampling algorithm for time variant signal,” European Signal
Processing Conference, pp. 2143-21477, Bucharest, Romania, Aug. 2012.

J. J. Ding and C. H. Lee, “Noise removing for time-variant vocal signal
by generalized modulation,” APSIPA ASC, pp. 1-10, Kaohsiung, Taiwan,

h
Oct. 2013 Blt)-—21E bt
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Q:
If x(¢) = h(t) * y(¢) where  h(t) = IFT[exp(jZn: a,f* ]]
then N

~ 1 N\ k-1
S (¢, f):Sy(t+%kZ:;kak ', f),STFT,Gabor

~ 1 N,
Wx(r,f)_Wy(Hzﬂ;kakf , f),WDF



8-2 Rotation by 77/2: Fourier Transform

X(f)=FT(x(t)) ¥ o
| Sy (LIS (=10 STFT | sy
G,(,[f)=0G, (—f,f)e_ﬂ”ﬁ ,Gabor $—>
Wy, /)=W.(=1.1) ,WDF 1
Wi (1, 0) = W,(0,)) (clockwise rotation by 90°)
Wil0,1): Wx(4, 0) page 207
FTH(#A€)= x1€)
(/0‘) w{)(\, R rotation \97 360°

QR
Strictly speaking, the rec-STFT have no rotation property.
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For Gabor transforms, if

G, (1.f)=] ™" e x(r)da

G, (t,f) = on e_”(r_”ze_ﬂ”fTX(r)dr X(f) = FT[x(t)] = j:x(t)e_ﬁ”f’dt

—0o0

then GX (t,f) — Gx (_f’t)e_jZﬂ'tf

(clockwise rotation by 90° for amplitude)

(Proof): G, (¢, f)= fo e T gri2A T J‘_OO x(u)e’ ™ dudr

® OO

=| x(u)e_”(H)2 (IOO

Q0 —00

® 00 0 2 ) 0
= x(u)(J‘ e " e’z’”(f”)df)du =j

o —00 —00 —00

ejzm(f”‘)dr)du

x(u)(FT(e”(”)2 )

du
f>f+u

Since FT( i ) _o 7 FT( Sl ) _ o2 ]
0 . 2
Gy (1, f) =j x(u)e 2T gy

_ o2 f x(u) o2t == G (_ f,t) oIS
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If we define the Gabor transform as

G, (t,f) = ej”ftj._oo e_”(f_”ze_jz”ﬁx(f)dr ’

and Gy (1,f)= ej”f".mo e_””_’)ze_jz”fTX(r)dT

—00

then |G, (¢, /)= G,(~f,1)
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If Wx(t,f)zj_wx(t+2'/2)-x*(t—r/2)e_j2“f -dt  is the WDF of x(7),

W, (t,f)zjiX(t+r/2)-X*(t—r/2)e_j27”f -d7 is the WDF of X( f),

then W, (1, /) =W, (~/.1)
(clockwise rotation by 90°)

B 3 VR time-frequency distribution » 7 #f i & F 7
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*If  X(f)=IFT[x(®)]= x(t)e”'dt »then

W (6.1)=W.(f~1)"  Gy(t,f)=G.(f.,~t)e"
(counterclockwise rotation by 90°).
o [f X(f)zx(—t) , then

W, (6, 1) =W, (-t.—f) »  Gx(t:f)=G.(-.=f).
(rotation by 180°).



Examples: x(¢) =11(¢), X(f) = FT]x(¢)] = sinc( f).

WDF of T1(?) WDF of sinc( f)

2 2

! 1

0 0

-1 _1

-2
-2 -1 0 1 2 -2
-2 -1 0 1 2

Gabor transform of T1(?) Gabor transform of sinc( /')

3
2
1
0

-1

2
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If a function is an eigenfunction of the Fourier transform,

[“e P ix()di=ax(f)  a=1,,-1,)

then its WDF and Gabor transform have the property of
W (. f)=W(f~)  |G(t.0)=]G.(f.~1)

(7 90°z 15 » ek kB E - #)

Example: Gaussian function

exXp (—72 t* )



: . : 24
Hermite-Gaussian function 2

é, (1) = exp(—7zt2 )Hm (¢)

m
27t d 27t

Hermite polynomials: H (t) =C e , C, 1s some constant,

" T drt”
H,(t)=1 H,(t)=t H,(t)=4rt -1
H,(t)=4rnt -3¢ H,(t)=167"t"-24x¢ +3

J-oo e_zmsz (t)H,(t)=D,0,,, >D,1s some constant,

Opn=1 whenm=n, o,,=0 otherwise.

m, m

[Ref] M. R. Spiegel, Mathematical Handbook of Formulas and Tables,
McGraw-Hill, 1990.
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Hermite-Gaussian functions are eigenfunctions of the Fourier transform

[ e, a{(=))4, (1)
e??tha\ _—C7 Qfgen‘ruuc-ﬁa“

Any eigenfunction of the Fourier transform can be expressed as the form of

k(t) = Za4q+r¢4q+r (t) where r=0, 1, 2, or 3,
9=0 4.+, Ar€ SOME constants

[ k(e)e ™ de = (=Y k()

—00
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WDF for ¢,(?) Gabor transform for ¢,()

» 0 1 2 3 2 - 0 1 2 3

WDF for ¢,(¢) 3 Gabor transform for ¢,(¢)

1
N

2

[\ N o -

]
, W
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Problem: How to rotate the time-frequency distribution by the angle other
than 7/2, 7, and 37/2?
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8-3 Rotation: Fractional Fourier Transforms (FRFTs)

X¢ (u): \/l—jcot¢ ej;rcot¢-u2 J-_o:Oe j27rcsc¢ute]7rc0t¢t ( ) ¢: 0.5q7
/Ldn?vp (. l\ CLWP ‘

When ¢ = 0.57, the FRFT becomes the FT. gcaled T
For +he or?’ o | F T

o], g:=057
If we denote the FRFT as  Of (i.e, X,(u)=0}[x(1)]) CSC¢=’ cot g = 0
)

then O {0¢ [x(t)]} O [x(0)]

Additivity property:

Physical meaning: Performing the FT a times.
o
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2 .cot¢.t2

— 7 'M'M o —jescout
Another definition X, (M)=\/1 ]27020‘[¢ e’ I_we feetnig! x(t)dt

[Ref] H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier
Transform with Applications in Optics and Signal Processing, New York,
John Wiley & Sons, 2000.

[Ref] N. Wiener, “Hermitian polynomials and Fourier analysis,” Journal of
Mathematics Physics MIT, vol. 18, pp. 70-73, 1929.

[Ref] V. Namias, “The fractional order Fourier transform and its application to
quantum mechanics,” J. Inst. Maths. Applics., vol. 25, pp. 241-265, 1980.

[Ref] L. B. Almeida, “The fractional Fourier transform and time-frequency

representations,” IEEE Trans. Signal Processing, vol. 42, no. 11,
pp. 3084-3091, Nov. 1994.

[Ref] S. C. Pei and J. J. Ding, “Closed form discrete fractional and affine
Fourier transforms,” IEEE Trans. Signal Processing, vol. 48, no. 5, pp.
1338-1353, May 2000.



FT[x )] =X(f)

FT{FT [x(1)]} = x(

FT(FT{FT[x(t }) X(—f):IFT[f(t)]

~

FT| FT(FT{FT[x(t)]})]=

What happen if we do the FT non-integer times?

Physical Meaning:
Fourier Transform: time domain — frequency domain

Fractional Fourier transform: time domain — fractional domain

Fractional domain: the domain between time and frequency

(partially like time and partially like frequency)

255
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Experiment:
2 w 2 002 FT O\RFET
=0 =0.01n 0.05
/| ¢ f(t): rectangle 7 ¢ 1 ) T
0
-1 ‘
-5 0 5
2
¢ =0.5m
1 FT
0
1 1 1 F(w): sinc function
- -5 0 5 5 0 5 5 0 g

blue line: real part
green line: imaginary part
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Time domain  Frequency domain fractional domain

Modulation Shifting Modulation + Shifting
Shifting Modulation Modulation + Shifting
Differentiation X j2rf Differentiation and x j2 zf
X —j27f Differentiation  Differentiation and x —j2 zf

x(t—ty)——>exp(—j27 fiy) X (f)

) fractional FT

>exp(jo— j2rut,sing) X (u—t,cos¢)
@ = it singcos ¢

(-
9 () jarf X (1)
d
dt

x(1) Jractional FT > j2mu X (u )sm¢+j X (u)cos¢
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[Theorem] The fractional Fourier transform (FRFT) with angle ¢ is equivalent

to the clockwise rotation operation with angle ¢ for the Wigner distribution

function (or for the Gabor transform)

FRFT with parameter ¢ = \ with angle ¢

For the WDF

It W.(t, f) 1s the WDF of x(¢), and Wy, (u, v) 1s the WDF of X (u),
(X u) 1s the FRFT of x(¢)), then

Wy, (u,v)=W, (ucosg—vsing,using+vcosg)

e [ 5
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For the Gabor transform (with standard definition)

If G.(¢, f) 1s the Gabor transform of x(¢),
and Gy, (4, v) 1s the Gabor transform of X (u), then

Gy, (u,v) = /I 2msin g sin29) 2] i (ucosg—vsing,using+vcosy)

Gy, (u,v)‘ =

G, (ucosg—vsing,u sin¢+vcos¢)‘

For the Gabor transform (with another definition on page 244)

Gy, (u,v)=G, (ucosg—vsing,using +vcosg)

The Cohen’s class distribution and the Gabor-Wigner transform also
have the rotation property



The Gabor Transform for the FRFT of a cosine function 260

(a) ¢ 0 (b) b= " 6 (c) b= -

MI

(d) p=376 (e) p= 47[/6 (f)¢ 572/6




The Gabor Transform for the FRFT of a rectangular function.

(a)¢ 0 _LL.((b)qﬁ 76 30 (c)¢ 276  60°

(d) = 372'/6 (e) Q= 472'/6 () ¢ 57/6
FT ﬂO’ 120 ° ISO
ITFT I2FT

261
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8-4 Twisting: Linear Canonical Transform (LCT)
2 chrys 4 | Senled FT

d 2 - ﬂlut i
Xigpea (4)= L™ e e x(¢t)d¢ Whenb=#0

jb
X ooy (1) = - €77 x(du) when b =0
b0, d== , | Kayea (W) ? lf;((—-u)} - — VL
ﬁd bcv—J should be satisfied F T [OC‘ 3;\ - [ - 0]
W‘aehFZuzr i‘a'r?lfnet;rs;a;b, o e ? z] L ? -:)]
X(U):,J;L; 6&7’ [éﬁ;; é)’aﬂ(f)d’c FftT:7T o b J: [cos$ sing
e a0 M 4L ‘“”J
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Additivity property of the WDF
If we denote the LCT by Qt@hed) , ie., X, p.q (1) = O [x(0)]

then 01(7‘12 by s€3,d5) {Oéalablacladl) [X(f)]} — 01(;13 b3.c3.d3) [X(t)]
{% b, } B {az b, :||:a1 b }
where =
c, d, c, d,||l¢ d,

[Ref] K. B. Wolf, “Integral Transforms in Science and Engineering,” Ch. 9:
Canonical transforms, New York, Plenum Press, 1979.
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If WX(a o) (u,v) is the WDF of X, , . (1), where X, , . ,(u) 1s the LCT of x(¢),
then
WX(abcd) (u,v) =W (du —bv,—cu+ av)

WX(a,b,c,d) (au +bv,cu+ dv) =W, (u,v)

LCT == twisting operation for the WDF -
— Wytapea 1970 = Wy(0, 0)

Lov cm/ O, b/C/G,

The Cohen’s class distribution also has the twisting operation.
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Apwrpd g* LCTH#H— B9 < (0,0)T 7o BaEksE 2
W T - Ba - REP es B(0,0) T T FA RS o

Wyluvy g fais Wrond ) i
1,2
oveo, |
» [-aX1S
¥ s a
1,-2 wisti =8 )
1,2 o (e’ (0.-1)
Wa(a/V) = | Wrobogl avdby, cutdd ) (-4,-3)
W ("")2) ""Wxab“lo, ‘) o
W1( “/l) p wxmw (4/5) "0\1’2‘:"0 - ¢ “')-0‘ :.’
A+2p: 4] cx2d=3

T (43)

> [-axIs

<l
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d —j27zgut j7zgt2
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1 j7z—u2 o0
Xapea ()= I e’ | e e " x(t)ar Whenb=0
X oear () =d €7 x(du) when 5=0
ad — bc = 1 should be satisfied
a b| [ cosg sing ¢=72  Fourier
¢ d| |-sing cosg . . transform
fractional Fourier —
transform ¢=0 1identity
{a b} {1 lz} operation
linear canonical c A Fresnel transform |# = -7/2 1nverse
transform (convolutionwith ~ Fourler
a b| [1 0 a chirp) transform
c d| |z 1
chirp multiplication 2
X(a,O,c,d) (u) = eﬂ”” X( l/l)
a b B /0 O
L d } _{ 0 0'}

scaling



‘4% — Linear Canonical Transform fcsk & & sienpd i%

(1) Fresnel Transform (& 2k &5 § ® g 3E)

U, (x,y U, (x5, )dxdy,

k =27/ A: wave number A: wavelength  z: distance of propagation

© ( )? J (x x;)?
\/ ]ZZJ‘ ] - \ jAz j—w ( i’yi)dx dy’L
d

(2 % 1-D 7 LCT) U (1,7)* e’ 2z %
COhvo|u+7oh
Ll) ﬂ Vi KeiZ w

—

a b
Fresnel transform 4p § »* LCT { a’} =
c
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(2) Spherical lens, refractive index = n

k- 22
U (x,y) _ piknd, sz[ Y JUi (x’y)
. k . 7
: focal length  A: thick fl - -
f ocal Ieng 1CKNECSS OT 1€EnS ‘7':1 A’C

=i lens 4p % >+ LCT | ¢ b _ 1 0 iyl
¢ d| |-1ir 1
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(3) Free space f= Spherical lens %% &

A lens, (focal length = )

free space, (length =z,) free space, (length = z,)

Input Output
v

Input f= output 2. ¥ ek 7% > ¥ 0% LCT % 51

a b [1 5] 1 o1 az] |7y MatE)TTy
c d| |0 1 |-1/af 1]0 1| | z,




[z, Az z,
——= Mz, +z,)—
f ( 1 2) f
1 4
| AS / ]
@arE e g2 oA
-1 0
1
a7
%, = %, = f — Fourier Transform + Scaling
0 Af|
_1
Af 0

a b
c d

|

7, = 7, — fractional Fourier Transform + Scaling

270

| 528

( Fouvier oP-H(;)

% (T %6
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* LCT kA 45 %58 % toendt o

FE R P| 2x2 chAELIE E 0 YA T AT FR e TLIR g fo S A A

e £ LCT kA 4728 kieeni % > 05 & Nifgh, enfifa)™ o B5g

v

& =l -
5 PR

H. M. Ozaktas and D. Mendlovic, “Fractional Fourier optics,” J. Opt. Soc. Am. A,
vol.12, 743-751, 1995.

[2] L. M. Bernardo, “ABCD matrix formalism of fractional Fourier optics,” Optical
Eng., vol. 35, no. 3, pp. 732-740, March 1996.

ek \\\ﬁ}
| —

[
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I1X. Applications of Time-Frequency Analysis
for Filter Design

9-1 Signal Decomposition and Filter Design

Signal Decomposition: Decompose a signal into several components.

Filter: Remove the undesired component of a signal

(1) Decomposing in the time domain

component 1 : component 2

; » f-axis
! tO

criterion
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(2) Decomposing in the frequency domain

x(t) =sin(4zt) + cos(107¢)

5 12 2 5 f-axis

e Sometimes, signal and noise are separable in the time domain —
(1) without any transform

e Sometimes, signal and noise are separable in the frequency domain —

(2) using the FT (conventional filter)
H($= | for 1£1< 3.5

x, (1) =$T[FT(xi(t))H(f)] H(£):0 otherwise

FFT-g FFTg

e [f signal and noise are not separable in both the time and the frequency
domains —
(3) Using the fractional Fourier transform and time-frequency analysis
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"R & 37 el BE o criterion in the time domain 4 5§ *% cutoff line

perpendicular to #-axis

' f~axis

§cut0ff line

Lo [-axis

YA pEAE A 47 e L 0 criterion in the frequency domain 4p § 3%

cutoff line perpendicular to f-axis

cutoff line




x(¢) = triangular signal + chirp noise 0.3exp[j 0.5(t —4.4)?] 275

VAN B

'signal + noise

0.5 0.5
-10 5 0 5 10 10 5 0 5 10
3 1 reconstructed signal

FRFT h
2; ¢=-arccot(1/2m) :

-10 -5 0 5 10 -10 -5 0 5 10



x(¢) = triangular signal + chirp noise 0.3exp[j 0.5(t —4.4)?] 276

f-axis
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Decomposing in the time-frequency distribution

Ifx(r)=0fort<T,and t>T,

/4 (t, f ) =0 for¢<T,and t>T, (cutoff lines perpendicular to f-axis)
If X(f)=FT[x(¢#)] =0 for f< F,and f> F,

W (t.f)=0 forf<F cand /> F, (cutoff lines parallel to t-axis)

What are the cutoff lines with other directions?

with the aid of the FRFT, the LCT, or the Fresnel transform
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* Filter designed by the fractional Fourier transform

x, (t)= 02 {0¢ x,(¢) | H (u)] it x (1) = IFT[FT(x,(0))H(f)]

O! means the fractional Fourier transform:

0 (x(1)) =1— jeotp @< [* e ™ y(1)ar

f;aXiS A ¢ A

- - Signal noise \< Hoise
Signal Signal
/\\ \ FRFT, \ FRFT_, /\
) t-axis R\J T

cutoff line
cutoff line

H{u)=] u<cu,
HW):O Uy 4o



st e,
0

O T T

S(u): Step function

(1) ¢ & cutoff line fr f~axis 74 & & 2_
(2) u, % >+ cutoff line FE4E J BEeniEdE

GLA I f %)

279



e Effect of the filter designed by the fractional Fourier transform (FRFT): 280

Placing a cutoff line in the direction of (—sing, cos¢)
¢p=0 ¢p=0.157 ¢=0.357 =057
\ /
(time domain) % j; £ FT (FT)

A
\% < >
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f-axis

(0,./1)

cutoff line 2 desired part :
undesired

r-axis
undesire
part

cutoff line |
24imes of FVFT filfer P=7 uy="?
Lor cutolf line ) Cut of £ hnex
¢= ovctan ('(" ) 6 - av¢ tan ('t°
'h .P‘ (A‘: -—'('.'o 'PO m>

Uo TH24E2 _ lc‘_(‘, (o=
2 =

AT5Ee V463
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e The Fourier transform 1s suitable to filter out the noise that 1s a combination of

sinusoid functions exp(jn,?).

e The fractional Fourier transform (FRFT) 1s suitable to filter out the noise that

1s a combination of higher order exponential functions

expj(n, t*+n_ <1 +n 02+ L +n, > +n,t)]

For example: chirp function exp(jn, ?)

e With the FRFT, many noises that cannot be removed by the FT will be

filtered out successfully.



Example (I)
! real part
5 imaginary part
0 wﬂUﬂUﬂW
L 0

(a) Signal s(¢)

283

-10
10 -10 0 10

t—axis

(b) () = s(¢) + noise (c) WDF of s(7)

s(t)=2cos(5t)exp(—t*/10)

. 2 a2 . 2.
n(t) — 0.58]0.2% +O.58]0.3t +j8.5t + 0.58]0.46t j9.6t
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10 10
5 5
0 0
-5 -5
: -10 -10
-10 0 10 -10 0 10 -10 0 10
(d) WDF of f{?) (e) GT of s(¢) (f) GT of A7)

GT: Gabor transform, WDF: Wigner distribution function

horizontal: t-axis, vertical: w-axis
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GWT: Gabor-Wigner transform
10

N 0 10 10 0 10 10 L4’ 0 10

(g) GWT of f(¥) (h) Cutoff lines on GT (i) Cutoff lines on GWT

. . 2 tmer FyFT  filters
15 4L 5 K4 2 FrFT 7 order
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- . - -10
-10 0 10 -10 L1'0'L2 10 -10 0 10

(j) performing the FRFT (k) High pass filter (1) GWT after filter
and calculate the GWT 0 n ( O?( x(+ )> H(«) )
? H(u)f-{ O Ucucu,
[ b‘ﬂ"f}'WYSf

mean square error
y | (MSE)=0.1128%

- 2
-10 0 10 -10 0 10

(m) recovered signal  (n) recovered signal (green)
and the original signal (blue)
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Example (II)

Signal + 0.7exp(j0.032¢” — j3.4¢)

2 3
2
1 | 1
0 0
1

10 -10 0 10

-10 0 -10 0 10
(a) Input signal (b) Signal + noise (c) WDF of (b)

10 10 : :

| 2 MSE =

5 0.3013%

0 1

5

0

-10 - - - ‘

-10 0 0 10 % 0 " 10 -10 0 10

(d) Gabor transform of (b) (e) GWT of (b) (f) Recovered signal
How many times of RFT fildeve owre req wired
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[Important Theory]:

Using the FT can only filter the noises that do not overlap with the signals
in the frequency domain (1-D)

In contrast, using the FRFT can filter the noises that do not overlap with
the signals on the time-frequency plane (2-D)
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Q1: R time-frequency distribution t* #iif & k2 filter £ signal
decomposition 77 58 ?

Q2: Cutofflines 3 ¥ s¢ #_2LE & vl ?

) N/ qtvchﬁzfa’ V72 ﬁgﬂ’ T ‘}\2([-(')
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Shearug— by FT —4%7 ’1,
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[Ref] S. C. Per and J. J. Ding, “Relations between Gabor transforms and

fractional Fourier transforms and their applications for signal processing,”
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2007.
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9-2 TF analysis and Random Process

For a random process x(¢), we cannot find the explicit value of x(7).
The value of x(¢) 1s expressed as a probablhty function.

ool @4 ) < £ (b4 -Elie) ) ~Ele)

MFP altinem - —_—
* Auto-covariance function R (7,7) E (#(1) %(T))
eppected ——— In usual, we suppose that
value R (t,7)=E|x(t+7/2)x"(t-7/2)] E[x(#)] = 0 for any ¢

RALT) = Rx (43, t-3)
E|x(t+7/2)x"(t-7/2) |

:_Hx(t+r/2,é’1)x*(t—7/2,52)P(§1,§2)d§1d§2

(alternative definition of the auto-covariance function:
R (t,t)=E|x(t)x"(t-7)]
* Power spectral density (PSD) S (¢, /)

S, (t,f)ZJ‘_ZRx (t,r)e—f'zﬂfrdr < E (V‘/xH’; .p))
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E[Wx(t,f)]z..oo E[x(t+r/2)x*(t—r/2)]-e_j2”ff-df

—00

e 00

=| R.(t,7)-e?"/"-dr

o —00

e 00

=| R (t,7)-e?"/"-dr

o —00

=S (¢, f)

Relation between the ambiguity function and the random process

E| 4. (n.7)|= JjoE[x(t +7/2)x (- 7/2)] e /P dt = j_z R (t,7)e”’*™"" dt



* Stationary random process:

the statistical properties do not change with +. <
prop /,gzg(x(+.+‘f)7r*(1‘r»))

- (A
Auto-covariance function R_ (tl,f) =R (tz,,[) ~R. (T) E ( (f,

~— —

R (z') = E[x(r/Z)x* (—7/2)] for any 7,

= [ [x(z/2,6)x (<2/2,8)P(60,8, ) dS e,

PSD: Sx(f):jin(r)e_jZ”der

White noise: S, (f)=0 where ois some constant.

R (r)=06(7)

X
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+5) 7 (¢,2)



* When x(¢) 1s stationary, 294

E :Wx (t’f)] =S.(/) (invariant with f)

E[4.(n.7)]=[ R (c)-e " dt =R () [ " dt = R (v)5(n)

(nonzero only when 7= 0)

a typical E[W (1, f)] for a typical E[A (7, 7)] for
stationary random process  stationary random process

2 2
0

-2

-2 0 2 -2 0 2 7

(ODW)  ove stationor,

0 () may be non stat t‘wy

IL (%) s white
WG (v)V) ave white

IE A %) s S{'aﬂohav‘/

!/(I) X (t/a) -
T eF A £ (4 —t0) (1) ™ 0\{17( (+)




* For white noise, / 295

EW.(1.f)]=0 AT

E[4,(n,7)]=06(7)5(n) ——n
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[Ref 3] P. Flandrin, “A time-frequency formulation of optimum
detection” , IEEE Trans. ASSP, vol. 36, pp. 1377-1384, 1988.

[Ref4] S. C. Pei and J. J. Ding, “Fractional Fourier transform, Wigner
distribution, and filter design for stationary and nonstationary
random processes,” IEEE Trans. Signal Processing, vol. 58, no.
8, pp. 4079-4092, Aug. 2010.
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Filter Design for White noise 3 times of he
. FrFT ‘FI [fers
4 f-ax
conventional filter

by TF analysis

%/ % - white noise everywhere

slahal <o v\ot.ce Yot 1o

E;onq: €nergy of the signal

SNR ~ IOIOglo szgnal | |
_[ j (¢, f)didf  A: area of the time frequency distribution of
(t.1)e the signal
signal part

ESl na
SNR ~10log,, o-gAl The PSD of the white noise is S, (f) = o
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C IfE[Wx (l‘,f)} varies with ¢ and E[Ax (77,1)} is nonzero when 77 # 0,

then x(¢) 1s a non-stationary random process.

o If @ h(t)=x(t)+x,()+x,(t)+ +x, (1)
@ x (#)’s have zero mean for all #’s
® x,(t)’s are mutually independent for all £’s and 7’s
E|x,(t+7/2)x,(t-7/2) |= E[x,(t+7/2D)]E| x,(t-7/2) | =0

if m # n, then

EHN)= X ()} EL4 (0] = S EL4, (.0)

n=1
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E[x(?)] # 0 should be satisfied.

Otherwise,

t+

E[X(, f)]= E[L_;B x(r)w(t — r)e‘jz”ﬁdr] = j:: E[x(r)]w(t — r)e‘jZ”ﬁdt

for zero-mean random process, E[X(¢, /)] =0

(2) Decompose by the AF and the FRFT

Any non-stationary random process can be expressed as a summation
of the fractional Fourier transform (or chirp multiplication) of
stationary random process.
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An ambiguity function plane can be viewed as a combination of infinite
number of radial lines.

Each radial line can be viewed as the fractional Fourier transform of a
stationary random process.



S(f)=
o= S(f)=
®z) S(f)=

(/)=

white noise
pn k nolce

PuvP,C n °7S€

oa%+0 color noise
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4% = Time-Frequency Analysis 32 %% & & 4

AD 1785
AD 1812
AD 1822
AD 1898
AD 1910
AD 1927
AD 1929
AD 1932
AD 1946

J

by

-N-\»

Eay

The Laplace transform was invented

The Fourier transform was invented

The work of the Fourier transform was published

Schuster proposed the periodogram.

The Haar Transform was proposed

Heisenberg discovered the uncertainty principle

The fractional Fourier transform was invented by Wiener

The Wigner distribution function was proposed

The short-time Fourier transform and the Gabor transform was
proposed.
In the same year, the computer was invented

|4 P o 4p 9 & transform / distribution £ % A e 3 P K
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AD 1961 Slepian and Pollak found the prolate spheroidal wave function

AD 1965 The Cooley-Tukey algorithm (FFT) was developed

AD 1966 Cohen’s class distribution was invented

AD 1970s VLSI was developed

AD 1971 Moshinsky and Quesne proposed the linear canonical transform

AD 1980 The fractional Fourier transform was re-invented by Namias

AD 1981 Morlet proposed the wavelet transform

AD 1982 The relations between the random process and the Wigner distribution
function was found by Martin and Flandrin

AD 1988 Mallat and Meyer proposed the multiresolution structure of the wavelet
transform;
In the same year, Daubechies proposed the compact support
orthogonal wavelet

12 A A —‘ﬁ i1 > 4 e0&_transform / distribution 7 & {3 P *‘ﬁ
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AD 1989 The Choi-Williams distribution was proposed; In the same year, Mallat
proposed the fast wavelet transform

AD 1990 The cone-Shape distribution was proposed by Zhao, Atlas, and Marks

AD 1990s The discrete wavelet transform was widely used in image processing

AD 1992 The generalized wavelet transform was proposed by Wilson et. al.

AD 1993 Mallat and Zhang proposed the matching pursuit;
In the same year, the rotation relation between the WDF and the
fractional Fourier transform was found by Lohmann

AD 1994 The applications of the fractional Fourier transform in signal processing
were found by Almeida, Ozaktas, Wolf, Lohmann, and Pei;
Boashash and O’Shea developed polynomial Wigner-Ville distributions

AD 1995 Auger and Flandrin proposed time-frequency reassignment

L. J. Stankovic, S. Stankovic, and Fakultet proposed the pseudo
Wigner distribution
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AD 1996 Stockwell, Mansinha, and Lowe proposed the S transform

Daubechies and Maes proposed the synchrosqueezing transform

AD 1998 N. E. Huang proposed the Hilbert-Huang transform

Chen, Donoho, and Saunders proposed the basis pursuit

AD 1999 Bultan proposed the four-parameter atom (i.e., the chirplet)
AD 2000 The standard of JPEG 2000 was published by ISO

Another wavelet-based compression algorithm, SPIHT, was proposed
by Kim, Xiong, and Pearlman

The curvelet was developed by Donoho and Candes

AD 2000s The applications of the Hilbert Huang transform in signal processing,
climate analysis, geology, economics, and speech were developed

AD 2002 The bandlet was developed by Mallet and Peyre;
Stankovic proposed the time frequency distribution with complex
arguments
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AD 2003 Pinnegar and Mansinha proposed the general form of the S transform

Liebling et al. proposed the Fresnelet.

AD 2005 The contourlet was developed by Do and Vetterli;
The shearlet was developed by Kutyniok and Labate

The generalized spectrogram was proposed by Boggiatto, et al.

AD 2006 Donoho proposed compressive sensing

AD 2006~ Accelerometer signal analysis becomes a new application.
AD 2007 The Gabor-Wigner transform was proposed by Pe1 and Ding
AD 2007 The multiscale STFT was proposed by Zhong and Zeng.

AD 2007~ Many theories about compressive sensing were developed by Donoho,

Candes, Tao, Zhang ....

AD 2010~ Many applications about compressive sensing are found.

AD 2012 The generalized synchrosqueezing transform was proposed by L1 and
Liang




306

AD 2015~ Time-frequency analysis was widely combined with the deep
learning technique for signal identification

The second-order synchrosqueezing transform was proposed by
Oberlin, Meignen, and Perrier.

AD 2017 The wavelet convolutional neural network was proposed by Kang et al.

The higher order synchrosqueezing transform was proposed by Pham
and Meignen

AD 2018~ With the fast development of hardware and software, the time-
frequency distribution of a 10%-point data can be analyzed efficiently
within 0.1 Second

AT AT IR e A RDF R > BR LR F P A gL S



