VIII．Motions on the Time－Frequency Distribution

Fourier spectrum 為 1－D form，只有二種可能的運動或變形：
（1）Modulation $e^{j 2 \pi f_{0} t} x(t) \xrightarrow{F T} X\left(f-f_{0}\right)$
（2）Scaling

$$
x(t / a) \xrightarrow{F T}|a| X(a f)
$$

Time－frequency analysis 為 2－D，在 2－D 平面上有多種可能的運動或變形
（1）Horizontal shifting
（3） Dilation＝scaling
（5）Generalized Shearing
（7）Twisting

$$
\pi \rightarrow \text { 正开 }
$$

（2）Vertical shifting
（4）Shearing
（6）Rotation
FrFT

LCT 扭曲

8-1 Basic Motions
(1) Horizontal Shifting $x\left(t-t_{0}\right) \rightarrow S_{x}\left(t-t_{0}, f\right) e^{-j 2 \pi f t_{0}}$,STFT, Gabor
$\rightarrow W_{x}\left(t-t_{0}, f\right) \quad$,Wigner
(2) Vertical Shifting
$e^{j 2 \pi f_{0} t} x(t) \rightarrow S_{x}\left(t, f-f_{0}\right) \quad$,STFT,Gabor
modulation $\rightarrow W_{x}\left(t, f-f_{0}\right) \quad$,Wigner

(3) Dilation (scaling)

$$
\begin{aligned}
\frac{1}{\sqrt{|a|}} x\left(\frac{t}{a}\right) & \rightarrow \\
& \approx S_{x}\left(\frac{t}{a}, a f\right), \text { STFT,Gabor } \\
& \rightarrow W_{x}\left(\frac{t}{a}, a f\right), \mathrm{WDF}
\end{aligned}
$$

$$
\begin{aligned}
& |a|>1 \\
& o r|a|<1 ?
\end{aligned}
$$

$$
237
$$

（4）Shearing

$$
\begin{aligned}
& x(t)=e^{j \pi a t^{2}} y(t) \\
& S_{x}(t, f) \approx S_{y}(t, f-a t), \text { STFT, Gabor } \\
& W_{x}(t, f)=W_{y}(t, f-a t), \text { WDF } \\
& \quad S_{x}(T, O)=S_{y}(T,-a T)
\end{aligned}
$$

$a=\lambda z$
（page $2677_{j \pi t^{2}}$ Fresse $\{$ trangform（ 電磁波
$x(t)=e^{a} * y(t) \quad(*$ means convolution $)$

$$
\begin{aligned}
& \left(\begin{array}{l}
S_{x}(t, f) \approx S_{y}(t-a f, f), \text { STFT, Gabor } \\
W_{x}(t, f)=W_{y}(t-a f, f), \text { WDF } \\
X(f)=F T\left(e^{j \pi \frac{t 2}{a}}\right) Y(f)=\sqrt{j} a e^{-j \pi a f^{2}}
\end{array} Y(f)\right. \\
& e^{-\pi t^{2}} \rightarrow e^{-\pi f^{2}} \\
& e^{-\pi\left(\frac{t}{c}\right)^{2}} \rightarrow|c| e^{-\pi c^{2} f^{2}} \\
& \text { if } c^{2}=j a \\
& e^{j \pi} \frac{t^{2}}{a^{2}} \rightarrow \sqrt{j a} e^{-j \pi a f^{2}}
\end{aligned}
$$

$a>0$
instantaneous or $a<0$ ？ freq．$=\frac{3}{2} a t^{2}$
If

$$
x(t)=e^{j \pi a t^{3}} y(t)
$$

$$
S_{x}(t, f)=S_{y}\left(t, f-\frac{3}{2} a t^{2}\right)
$$

(Proof): When $x(t)=e^{j \pi a t^{2}} y(t)$,

$$
\begin{aligned}
W_{x}(t, f) & =\int_{-\infty}^{\infty} x(t+\tau / 2) x^{*}(t-\tau / 2) e^{-j 2 \pi \tau f} \cdot d \tau \\
& =\int_{-\infty}^{\infty} e^{j \pi a(t+\tau / 2)^{2}} e^{-j \pi a(t-\tau / 2)^{2}} y(t+\tau / 2) y^{*}(t-\tau / 2) e^{-j 2 \pi \tau f} d \tau \\
& =\int_{-\infty}^{\infty} e^{j 2 \pi a t \tau} y(t+\tau / 2) y^{*}(t-\tau / 2) e^{-j 2 \pi \tau f} d \tau \\
& =\int_{-\infty}^{\infty} y(t+\tau / 2) y^{*}(t-\tau / 2) e^{-j 2 \pi \tau(f-a t)} d \tau \\
& =W_{y}(t, f-a t)
\end{aligned}
$$

（5）Generalized Shearing

$$
\begin{aligned}
& x(t)=e^{j \phi(t)} y(t) \text { 的影響? } \\
& \phi(t)=\sum_{k=0}^{n} a_{k} k^{k} \quad \begin{array}{c}
\text { instantaneous } \\
\text { freq. }
\end{array} \quad \sum_{k=1}^{n} \frac{k a_{k}}{2 \pi} t^{k-1} f=f_{0} \quad f=\sum_{k=1}^{n} \frac{k a_{k}}{2 \pi} t^{k-1}+f_{0} \\
& \quad y(t) \quad x(t)=e^{f \theta(t)} y(t) \\
& \begin{array}{l}
S_{x}(t, f) \cong S_{y}\left(t, f-\sum_{k=1}^{n} \frac{k a_{k}}{2 \pi} t^{k-1},\right. \text { STFT, Gabor } \\
W_{x}(t, f) \cong W_{y}\left(t, f-\sum_{k=1}^{n} \frac{k a_{k}}{2 \pi} t^{k-1} \mathrm{WDF} \quad f=\sum_{k=0}^{n} b_{k} t^{k} \quad \frac{1 / \| d_{k}}{\uparrow} \quad f=0\right.
\end{array} \\
& \theta(t)=-2 \pi \int \sum_{k=0}^{n} b_{k} t^{k} d t \\
& \text { J. J. Ding, S. C. Pei, and T. Y. Ko, "Higher order modulation and the }
\end{aligned}
$$ efficient sampling algorithm for time variant signal，＂European Signal Processing Conference，pp．2143－2147，Bucharest，Romania，Aug． 2012.

J．J．Ding and C．H．Lee，＂Noise removing for time－variant vocal signal by generalized modulation，＂APSIPA ASC，pp．1－10，Kaohsiung，Taiwan， Oct． 2013

$$
\theta(t)=-2 \pi \sum_{k=0}^{n} \frac{b_{k} t^{k+1}}{k+1}
$$

Q:

$$
\text { If } \quad x(t)=h(t) * y(t) \quad \text { where } \quad h(t)=\operatorname{IFT}\left(\exp \left(j \sum_{k=0}^{n} a_{k} f^{k}\right)\right)
$$

then

$$
\begin{aligned}
& S_{x}(t, f) \cong S_{y}\left(t+\frac{1}{2 \pi} \sum_{k=1}^{n} k a_{k} f^{k-1}, \quad f\right), \text { STFT,Gabor } \\
& W_{x}(t, f) \cong W_{y}\left(t+\frac{1}{2 \pi} \sum_{k=1}^{n} k a_{k} f^{k-1}, \quad f\right), \mathrm{WDF}
\end{aligned}
$$

8-2 Rotation by $\pi / 2$: Fourier Transform

$$
\begin{aligned}
& X(f)=F T(x(t)) \\
& \left|S_{X}(t, f)\right| \approx\left|S_{x}(-f, t)\right| \quad \text {,STET } \\
& G_{X}(t, f)=G_{x}(-f, t) e^{-j 2 \pi f t}, \text {,Gabor } \\
& W_{X}(t, f)=W_{x}(-f, t) \quad \text {,WDF }
\end{aligned}
$$

$W_{x}(1,0)=W_{x}(0,1)$
$W_{x}(0,1)=W_{x}(-1,0)$

(clockwise rotation by 90°)

$$
\text { page } 207
$$

$\operatorname{FT}{ }^{4}(x(t))=x(t)$
rotation by 360°

Strictly speaking, the rec-STFT have no rotation property.

For Gabor transforms, if

$$
G_{x}(t, f)=\int_{-\infty}^{\infty} e^{-\pi(\tau-t)^{2}} e^{-j 2 \pi f \tau} x(\tau) d \tau,
$$

$$
G_{X}(t, f)=\int_{-\infty}^{\infty} e^{-\pi(\tau-t)^{2}} e^{-j 2 \pi f \tau} X(\tau) d \tau \quad X(f)=F T[x(t)]=\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t
$$

$$
\text { then } G_{X}(t, f)=G_{x}(-f, t) e^{-j 2 \pi t f}
$$

(clockwise rotation by 90° for amplitude)
(Proof): $\quad G_{X}(t, f)=\int_{-\infty}^{\infty} e^{-\pi(\tau-t)^{2}} e^{-j 2 \pi f \tau} \int_{-\infty}^{\infty} x(u) e^{-j 2 \pi \tau u} d u d \tau$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} x(u) e^{-\pi(\tau-t)^{2}}\left(\int_{-\infty}^{\infty} e^{-j 2 \pi \tau(f+u)} d \tau\right) d u \\
& =\int_{-\infty}^{\infty} x(u)\left(\int_{-\infty}^{\infty} e^{-\pi(\tau-t)^{2}} e^{-j 2 \pi \tau(f+u)} d \tau\right) d u=\int_{-\infty}^{\infty} x(u)\left(\left.F T\left(e^{-\pi(\tau-t)^{2}}\right)\right|_{f \rightarrow f+u}\right) d u \\
& \text { Since } \quad F T\left(e^{-\pi \tau^{2}}\right)=e^{-\pi f^{2}}, \quad F T\left(e^{-\pi(\tau-t)^{2}}\right)=e^{-j 2 \pi t f} e^{-\pi f^{2}}
\end{aligned}
$$

$$
\begin{aligned}
G_{X}(t, f) & =\int_{-\infty}^{\infty} x(u) e^{-j 2 \pi t(f+u)} e^{-\pi(f+u)^{2}} d u \\
& =e^{-j 2 \pi t f} \int_{-\infty}^{\infty} x(u) e^{-j 2 \pi t u} e^{-\pi(u-(-f))^{2}} d u=G_{x}(-f, t) e^{-j 2 \pi t f}
\end{aligned}
$$

If we define the Gabor transform as

$$
\begin{aligned}
& G_{x}(t, f)=e^{j \pi f t} \int_{-\infty}^{\infty} e^{-\pi(\tau-t)^{2}} e^{-j 2 \pi f \tau} x(\tau) d \tau \\
& \text { and } G_{X}(t, f)=e^{j \pi f t} \int_{-\infty}^{\infty} e^{-\pi(\tau-t)^{2}} e^{-j 2 \pi f \tau} X(\tau) d \tau \\
& \text { then } G_{X}(t, f)=G_{x}(-f, t)
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } \quad W_{x}(t, f)=\int_{-\infty}^{\infty} x(t+\tau / 2) \cdot x^{*}(t-\tau / 2) e^{-j 2 \pi \tau f} \cdot d \tau \quad \text { is the WDF of } x(t), \\
& \\
& \quad W_{X}(t, f)=\int_{-\infty}^{\infty} X(t+\tau / 2) \cdot X^{*}(t-\tau / 2) e^{-j 2 \pi \tau f} \cdot d \tau \quad \text { is the WDF of } X(f),
\end{aligned}
$$

then $W_{X}(t, f)=W_{x}(-f, t)$
（clockwise rotation by 90° ）

還有哪些 time－frequency distribution 也有類似性質？

- If $X(f)=\operatorname{IFT}[x(t)]=\int_{-\infty}^{\infty} x(t) e^{j 2 \pi f t} d t$, then

$$
W_{X}(t, f)=W_{x}(f,-t), \quad G_{X}(t, f)=G_{x}(f,-t) e^{j 2 \pi t f}
$$

(counterclockwise rotation by 90°).

- If $X(f)=x(-t)$, then

$$
W_{X}(t, f)=W_{x}(-t,-f), \quad G_{X}(t, f)=G_{x}(-t,-f)
$$

$$
\text { (rotation by } 180^{\circ} \text {). }
$$

Examples: $x(t)=\Pi(t), \quad X(f)=F T[x(t)]=\operatorname{sinc}(f)$.

Gabor transform of $\Pi(t)$

WDF of $\operatorname{sinc}(f)$

Gabor transform of $\operatorname{sinc}(f)$

If a function is an eigenfunction of the Fourier transform，

$$
\int_{-\infty}^{\infty} e^{-j 2 \pi f t} x(t) d t=\lambda x(f) \quad \lambda=1,-j,-1, j
$$

then its WDF and Gabor transform have the property of

$$
W_{x}(t, f)=W_{x}(f,-t) \quad\left|G_{x}(t, f)\right|=\left|G_{x}(f,-t)\right|
$$

（轉了 90° 之後，和原來還是一樣）

Example：Gaussian function

$$
\exp \left(-\pi t^{2}\right)
$$

$$
\phi_{m}(t)=\exp \left(-\pi t^{2}\right) H_{m}(t)
$$

Hermite polynomials: $H_{m}(t)=C_{m} e^{2 \pi t^{2}} \frac{d^{m}}{d t^{m}} e^{-2 \pi t^{2}}, C_{m}$ is some constant,

$$
\begin{array}{cl}
H_{0}(t)=1 \quad H_{1}(t)=t & H_{2}(t)=4 \pi t^{2}-1 \\
H_{3}(t)=4 \pi t^{3}-3 t & H_{4}(t)=16 \pi^{2} t^{4}-24 \pi t^{2}+3 \\
\int_{-\infty}^{\infty} e^{-2 \pi t^{2}} H_{m}(t) H_{n}(t)=D_{m} \delta_{m, n}, D_{m} \text { is some constant, } \\
\delta_{m, n}=1 \text { when } m=n, \quad \delta_{m, n}=0 & \text { otherwise } .
\end{array}
$$

[Ref] M. R. Spiegel, Mathematical Handbook of Formulas and Tables, McGraw-Hill, 1990.

Hermite-Gaussian functions are eigenfunctions of the Fourier transform

$$
\begin{gathered}
\int_{-\infty}^{\infty} \phi_{m}(t) e^{-j 2 \pi f t} d t=\left((-j)^{m}\right) \\
\text { eigenvatue }
\end{gathered} \xrightarrow{\longrightarrow} \text { eigenfunction }
$$

Any eigenfunction of the Fourier transform can be expressed as the form of

$$
\begin{gathered}
k(t)=\sum_{q=0}^{\infty} a_{4 q+r} \phi_{4 q+r}(t) \quad \begin{array}{l}
\text { where } r=0,1,2, \text { or } 3, \\
a_{4 q+r} \text { are some constants }
\end{array} \\
\int_{-\infty}^{\infty} k(t) e^{-j 2 \pi f t} d t=(-j)^{r} k(f)
\end{gathered}
$$

Problem: How to rotate the time-frequency distribution by the angle other than $\pi / 2, \pi$, and $3 \pi / 2$?

8-3 Rotation: Fractional Fourier Transforms (FRETs)

$$
X_{\phi}(u)=\sqrt{1-j \cot \phi} e^{j \pi \cot \phi \cdot u^{2}} \int_{\text {chirp }}^{\infty} e^{-j 2 \pi \cdot \csc \phi \cdot u t} \underbrace{j \pi \cdot \cot \phi \cdot \tau^{2}} e^{x}(t) d t, \operatorname{chirp}^{\phi=0.5 a \pi}
$$

When $\phi=0.5 \pi$, the FRFT becomes the FT. scaled FT
Additivity property:
For the original $F T$

$$
a=1, \phi=0.5 \pi
$$

If we denote the FRFT as O_{F}^{ϕ} (i.e., $\left.X_{\phi}(u)=O_{F}^{\phi}[x(t)]\right) \quad \csc \phi=1, \cot \phi=0$ then $O_{F}^{\sigma}\left\{O_{F}^{\phi}[x(t)]\right\}=O_{F}^{\phi+\sigma}[x(t)]$

Physical meaning: Performing the FT a times.

Another definition $\quad X_{\phi}(u)=\sqrt{\frac{1-j \cot \phi}{2 \pi}} e^{j \frac{\cot \phi}{2} \cdot u^{2}} \int_{-\infty}^{\infty} e^{-j \csc \phi u t} e^{j \frac{\cot \phi}{2} \cdot t^{2}} x(t) d t$
[Ref] H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing, New York, John Wiley \& Sons, 2000.
[Ref] N. Wiener, "Hermitian polynomials and Fourier analysis," Journal of Mathematics Physics MIT, vol. 18, pp. 70-73, 1929.
[Ref] V. Namias, "The fractional order Fourier transform and its application to quantum mechanics," J. Inst. Maths. Applics., vol. 25, pp. 241-265, 1980.
[Ref] L. B. Almeida, "The fractional Fourier transform and time-frequency representations," IEEE Trans. Signal Processing, vol. 42, no. 11, pp. 3084-3091, Nov. 1994.
[Ref] S. C. Pei and J. J. Ding, "Closed form discrete fractional and affine Fourier transforms," IEEE Trans. Signal Processing, vol. 48, no. 5, pp. 1338-1353, May 2000.

$$
\begin{aligned}
& F T[x(t)]=X(f) \\
& F T\{F T[x(t)]\}=x(-t) \\
& F T(F T\{F T[x(t)]\})=X(-f)=\operatorname{IFT}[f(t)] \\
& F T[F T(F T\{F T[x(t)]\})]=x(t)
\end{aligned}
$$

What happen if we do the FT non-integer times?

Physical Meaning:

Fourier Transform: \quad time domain \rightarrow frequency domain
Fractional Fourier transform: time domain \rightarrow fractional domain
Fractional domain: the domain between time and frequency
(partially like time and partially like frequency)

Experiment:

$$
0.02 \mathrm{FT}
$$

$$
\begin{array}{|c|c|}
\hline 1 \\
0.0 .01 \pi \\
0 & \\
\hline-1 & \\
-5 & 0
\end{array}
$$

blue line: real part green line: imaginary part

Time domain Frequency domain fractional domain

Modulation	Shifting	Modulation + Shifting
Shifting	Modulation	Modulation + Shifting

Differentiation $\quad \times j 2 \pi f \quad$ Differentiation and $\times j 2 \pi f$
$\times-j 2 \pi f \quad$ Differentiation Differentiation and $\times-j 2 \pi f$

$$
\begin{aligned}
& x\left(t-t_{0}\right) \xrightarrow{F T} \exp \left(-j 2 \pi f t_{0}\right) X(f) \\
& x\left(t-t_{0}\right) \xrightarrow{\text { fractional } F T} \exp \left(j \varphi-j 2 \pi u t_{0} \sin \phi\right) X\left(u-t_{0} \cos \phi\right) \\
& \frac{d}{d t} x(t) \xrightarrow{F T} j 2 \pi f X(f) \\
& \frac{d}{d t} x(t) \xrightarrow{\text { fractional } F T} j 2 \pi u X(u) \sin \phi+\frac{d}{d u} X(u) \cos \phi
\end{aligned}
$$

[Theorem] The fractional Fourier transform (FRFT) with angle ϕ is equivalent to the clockwise rotation operation with angle ϕ for the Wigner distribution function (or for the Gabor transform)

$$
\text { FRFT with parameter } \phi=\ \text { with angle } \phi
$$

For the WDF

If $W_{x}(t, f)$ is the WDF of $x(t)$, and $W_{X \phi}(u, v)$ is the WDF of $X_{\phi}(u)$, $\left(X_{\phi}(u)\right.$ is the FRFT of $\left.x(t)\right)$, then

$$
\begin{aligned}
& W_{X_{\phi}}(u, v)=W_{x}(u \cos \phi-v \sin \phi, u \sin \phi+v \cos \phi) \\
& \text { page } 264
\end{aligned}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right], ~ ل م
$$

For the Gabor transform (with standard definition)
If $G_{x}(t, f)$ is the Gabor transform of $x(t)$, and $G_{X \phi}(u, v)$ is the Gabor transform of $X_{\phi}(u)$, then

$$
G_{X_{\phi}}(u, v)=e^{j\left[-2 \pi u v \sin ^{2} \phi+\pi\left(u^{2}-v^{2}\right) \sin (2 \phi) / 2\right]} G_{x}(u \cos \phi-v \sin \phi, u \sin \phi+v \cos \phi)
$$

$$
\left|G_{X_{\phi}}(u, v)\right|=\left|G_{x}(u \cos \phi-v \sin \phi, u \sin \phi+v \cos \phi)\right|
$$

For the Gabor transform (with another definition on page 244)

$$
G_{X_{\phi}}(u, v)=G_{x}(u \cos \phi-v \sin \phi, u \sin \phi+v \cos \phi)
$$

The Cohen's class distribution and the Gabor-Wigner transform also have the rotation property

The Gabor Transform for the FRFT of a cosine function

The Gabor Transform for the FRFT of a rectangular function.

8-4 Twisting: Linear Canonical Transform (LCT)
2 chirps +1 scaled FT

$$
\begin{array}{ll}
X_{(a, b, c, d)}(u)=\sqrt{\frac{1}{j b}} e^{j \pi \frac{d}{b} u^{2}} \int_{-\infty}^{\infty} e^{-j 2 \pi \frac{1}{b} u t} e^{j \pi \frac{a}{b} t^{2}} x(t) d t & \text { when } b \neq 0 \\
X_{(a, 0, c, d)}(u)=\sqrt{d} \cdot e^{j \pi c d u^{2}} x(d u) & \text { when } b=0
\end{array}
$$

If $b=0, d=-1,\left|X_{a b \varepsilon d}(u)^{\prime}\right|=|x(-u)|$
$a d-b c=1$ should be satisfied
Four parameters a, b, c, d
When $a=d=1, b=\lambda 2$

$$
\begin{aligned}
x(u) & =\sqrt{\frac{1}{\lambda z}} e^{j \pi \frac{1}{\lambda z} u^{2}} \int e^{-j \frac{2 \pi}{\lambda z}} u t e^{j \frac{\pi}{\lambda z} t^{2}} x(t) d t \\
& =\sqrt{\frac{1}{\lambda z}} \int e^{j \frac{j \pi}{\lambda z}(u-t)^{2}} x(t) d t
\end{aligned}
$$

$$
\begin{aligned}
& \text { F }:\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \\
& \text { IF: }\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]:\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \\
& \begin{array}{r}
\text { Fri } T: \\
\text { (page 253) }
\end{array}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]:\left[\begin{array}{c}
\cos \phi \sin \phi \\
-\sin \phi \cos \phi
\end{array}\right] \\
& \frac{a}{b}=\frac{d}{b}=\cot \phi
\end{aligned}
$$

Additivity property of the WDF
If we denote the LCT by $O_{F}^{(a, b, c, d)}$, i.e., $X_{(a, b, c, d)}(u)=O_{F}^{(a, b, c, d)}[x(t)]$
then $\quad O_{F}^{\left(a_{2}, b_{2}, c_{2}, d_{2}\right)}\left\{O_{F}^{\left(a_{1}, b_{1}, c_{1}, d_{1}\right)}[x(t)]\right\}=O_{F}^{\left(a_{3}, b_{3}, c_{3}, d_{3}\right)}[x(t)]$
where $\left[\begin{array}{ll}a_{3} & b_{3} \\ c_{3} & d_{3}\end{array}\right]=\left[\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right]\left[\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right]$
[Ref] K. B. Wolf, "Integral Transforms in Science and Engineering," Ch. 9: Canonical transforms, New York, Plenum Press, 1979.

If $W_{X_{(a, b, c, d)}}(u, v)$ is the WDF of $X_{(a, b, c, d)}(u)$, where $X_{(a, b, c, d)}(u)$ is the LCT of $x(t)$, then

$$
\begin{aligned}
& W_{X_{(a, b, c, d)}}(u, v)=W_{x}(d u-b v,-c u+a v) \\
& W_{X_{(a, b, c, d)}}(a u+b v, c u+d v)=W_{x}(u, v)
\end{aligned}
$$

$\mathrm{LCT}==$ twisting operation for the WDF

$$
\begin{gathered}
W_{\text {rabid }}(0,0)=W_{x}(0,0) \\
\text { for any } a, b, c, d
\end{gathered}
$$

The Cohen's class distribution also has the twisting operation.

我們可以自由的用 LCT 將一個中心在 $(0,0)$ 的平行四邊形的區域，扭曲成另外一個面積一樣且中心也在 $(0,0)$ 的平行四邊形區域。

$$
W_{x}(-1,2)=W_{x_{\text {abcat }}}(0,1)
$$

$$
W_{x}(1,2)=W_{x_{a b c d}}(4,3) \quad\left\{\begin{array} { l }
{ - a + 2 b = 0 } \\
{ a + 2 b = 4 }
\end{array} \left\{\begin{array}{l}
-c+2 d=3 \\
c+2 d=3
\end{array}\right.\right.
$$

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]
$$

$$
\begin{array}{ll}
X_{(a, b, c, d)}(u)=\sqrt{\frac{1}{j b}} e^{j \pi \frac{d}{b} u^{2}} \int_{-\infty}^{\infty} e^{-j 2 \pi \frac{1}{b} u t} e^{j \pi \frac{a}{b} t^{2}} x(t) d t & \text { when } b \neq 0 \\
X_{(a, 0, c, d)}(u)=\sqrt{d} \cdot e^{j \pi c d u^{2}} x(d u) & \text { when } b=0
\end{array}
$$

$$
a d-b c=1 \text { should be satisfied }
$$

附錄十一 Linear Canonical Transform 和光學系統的關係
（1）Fresnel Transform（電磁波在空氣中的傳播）

$$
\begin{array}{r}
U_{o}(x, y)=-\frac{i}{\lambda} \frac{e^{i k z}}{z} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{j \frac{k}{2 z}\left[\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}\right]} U_{i}\left(x_{i}, y_{i}\right) d x_{i} d y_{i} \\
k=2 \pi / \lambda: \text { wave number } \quad \lambda \text { : wavelength } \quad z \text { : distance of propagation }
\end{array}
$$

$$
\begin{aligned}
& U_{o}(x, y)=e^{i k z} \sqrt{\frac{1}{j \lambda z}} \int_{-\infty}^{\infty} e^{j \frac{k}{2 z}\left(y-y_{i}\right)^{2}} \sqrt{\frac{1}{j \lambda z}} \int_{-\infty}^{\infty} e^{j \frac{k}{2 z}\left(x-x_{i}\right)^{2}} \underbrace{}_{i}\left(x_{i}, y_{i}\right) d x_{i} d y_{i} \\
& (2 \text { 個 1-D 的 LCT) } \\
& U_{i}(x, y) * e^{\gamma} e^{j \frac{k}{2 z}} x^{2} \\
& \text { convolution }
\end{aligned}
$$

Fresnel transform 相當於 LCT $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}1 & \lambda z \\ 0 & 1\end{array}\right]=U_{i}(x, y) * e^{j \frac{\pi}{\lambda z} x^{2}}$
（2）Spherical lens，refractive index $=n$

$$
U_{o}(x, y)=e^{i k n \Delta} e^{-j \frac{k}{2 f}\left[x^{2}+y^{2}\right]} U_{i}(x, y)
$$

f ：focal length $\quad \Delta$ ：thickness of lens

$$
\frac{k}{2 f}=\frac{\pi}{\lambda f}
$$

經過 lens 相當於 LCT $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ -1 / \lambda f & 1\end{array}\right]$ 的情形
（3）Free space 和 Spherical lens 的綜合

Input 和 output之間的關係，可以用 LCT 表示

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
1 & \lambda z_{2} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-1 / \lambda f & 1
\end{array}\right]\left[\begin{array}{cc}
1 & \lambda z_{1} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1-\frac{z_{2}}{f} & \lambda\left(z_{1}+z_{2}\right)-\frac{\lambda z_{1} z_{2}}{f} \\
-\frac{1}{\lambda f} & 1-\frac{z_{1}}{f}
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
1-\frac{z_{2}}{f} & \lambda\left(z_{1}+z_{2}\right)-\frac{\lambda z_{1} z_{2}}{f} \\
-\frac{1}{\lambda f} & 1-\frac{z_{1}}{f}
\end{array}\right] \leftarrow \begin{gathered}
\text { 俌氏光覩类 } \\
\text { (Fourier opti(s) }
\end{gathered}
$$

$z_{1}=z_{2}=2 f \rightarrow$ 即高中物理所學的「倒立成像」

$$
\begin{gathered}
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
-\frac{1}{\lambda f} & -1
\end{array}\right]} \\
z_{1}=z_{2}=f \rightarrow \text { Fourier Transform + Scaling } \\
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
0 & \lambda f \\
-\frac{1}{\lambda f} & 0
\end{array}\right]} \\
z_{1}=z_{2} \rightarrow \text { fractional Fourier Transform }+ \text { Scaling }
\end{gathered}
$$

用 LCT 來分析光學系統的好處：
只需要用到 2×2 的矩陣運算，避免了複雜的物理理論和數學積分

但是 LCT 來分析光學系統的結果，只有在「近軸」的情形下才準確

參考資料：
［1］H．M．Ozaktas and D．Mendlovic，＂Fractional Fourier optics，＂J．Opt．Soc．Am．A， vol．12，743－751， 1995.
［2］L．M．Bernardo，＂ABCD matrix formalism of fractional Fourier optics，＂Optical Eng．，vol．35，no．3，pp．732－740，March 1996.

IX. Applications of Time-Frequency Analysis for Filter Design

9-1 Signal Decomposition and Filter Design

Signal Decomposition: Decompose a signal into several components.

Filter: Remove the undesired component of a signal
(1) Decomposing in the time domain

(2) Decomposing in the frequency domain

$$
x(t)=\sin (4 \pi t)+\cos (10 \pi t)
$$

- Sometimes, signal and noise are separable in the time domain \rightarrow
(1) without any transform
- Sometimes, signal and noise are separable in the frequency domain \rightarrow
(2) using the FT (conventional filter)

$$
\begin{aligned}
& x_{o}(t)=\operatorname{IFT}\left[F T\left(x_{i}(t)\right) H(f)\right] \\
& F_{r} F T-\varnothing \quad F_{V} F T \phi .
\end{aligned}
$$

$$
H(f)=1 \text { for }|f|<3.5
$$

$$
H(f)=0 \text { otherwise }
$$

- If signal and noise are not separable in both the time and the frequency domains \rightarrow
(3) Using the fractional Fourier transform and time-frequency analysis

以時頻分析的觀點，criterion in the time domain 相當於 cutoff line perpendicular to t－axis

以時頻分析的觀點，criterion in the frequency domain 相當於 cutoff line perpendicular to f－axis

$x(t)=$ triangular signal + chirp noise $0.3 \exp \left[j 0.5(t-4.4)^{2}\right]$

Decomposing in the time-frequency distribution

$$
\begin{aligned}
& \text { If } x(t)=0 \text { for } t<T_{1} \text { and } t>T_{2} \\
& \quad W_{x}(t, f)=0 \text { for } t<T_{1} \text { and } t>T_{2} \quad \text { (cutoff lines perpendicular to } t \text {-axis) } \\
& \text { If } X(f)=F T[x(t)]=0 \text { for } f<F_{1} \text { and } f>F_{2} \\
& \quad W_{x}(t, f)=0 \quad \text { for } f<F_{1} \text { and } f>F_{2} \quad \text { (cutoff lines parallel to } t \text {-axis) }
\end{aligned}
$$

What are the cutoff lines with other directions?
with the aid of the FRFT, the LCT, or the Fresnel transform

- Filter designed by the fractional Fourier transform

$$
x_{o}(t)=O_{F}^{-\phi}\left\{O_{F}^{\phi}\left[x_{i}(t)\right] H(u)\right\} \quad \text { 比較 : } x_{o}(t)=\operatorname{IFT}\left[F T\left(x_{i}(t)\right) H(f)\right]
$$

O_{F}^{ϕ} means the fractional Fourier transform:

$$
O_{F}^{\phi}(x(t))=\sqrt{1-j \cot \phi} e^{j \pi \cot \phi \cdot u^{2}} \int_{-\infty}^{\infty} e^{-j 2 \pi \cdot \csc \phi \cdot u t} e^{j \pi \cdot \cot \phi \cdot t^{2}} x(t) d t
$$

$$
\begin{aligned}
& x_{o}(t)=O_{F}^{-\phi}\left\{O_{F}^{\phi}\left[x_{i}(t)\right] H(u)\right\} \\
& \text { If } \quad H(u)=S\left(-u+u_{0}\right) \quad H(u)= \begin{cases}1 & u<u_{0} \\
0 & u>u_{0}\end{cases} \\
& \text { If } H(u)=S\left(u-u_{0}\right) \quad H(u)= \begin{cases}1 & u>u_{0} \\
0 & u<u_{0}\end{cases}
\end{aligned}
$$

$$
S(u): \text { Step function }
$$

（1）ϕ 由 cutoff line 和 f－axis 的夾角決定
（2）u_{0} 等於 cutoff line 距離原點的距離
（注意正負號）

- Effect of the filter designed by the fractional Fourier transform (FRFT):

Placing a cutoff line in the direction of $(-\sin \phi, \cos \phi)$

2 times of FVFT filter
for cutoff line 1

$$
\begin{aligned}
& \phi=\arctan \left(\frac{t_{1}}{f_{1}}\right) \\
& \frac{u_{0} \sqrt{t_{1}^{2}+f_{1}^{2}}}{2}=\frac{t_{1} f_{1}}{2}, u_{0}=\frac{t_{1} f_{1}}{\sqrt{t_{1}^{2}+f_{1}^{2}}}
\end{aligned}
$$

$$
\phi=? \quad u_{0}=?
$$

cut off line 2

$$
\theta=\arctan \left(\frac{t_{0}}{f_{0}}\right)
$$

$$
u_{1}=\frac{-t_{0} f_{0}}{\sqrt{t_{0}^{2}+f_{0}^{2}}}
$$

- The Fourier transform is suitable to filter out the noise that is a combination of

$$
\text { sinusoid functions } \exp \left(j n_{1} t\right) .
$$

- The fractional Fourier transform (FRFT) is suitable to filter out the noise that is a combination of higher order exponential functions

$$
\exp \left[j\left(n_{k} t^{k}+n_{k-1} t^{k-1}+n_{k-2} t^{k-2}+\ldots \ldots .+n_{2} t^{2}+n_{1} t\right)\right]
$$

For example: chirp function $\exp \left(j n_{2} t^{2}\right)$

- With the FRFT, many noises that cannot be removed by the FT will be filtered out successfully.

Example (I)

$\begin{array}{lll}\text { (a) Signal } s(t) & \text { (b) } f(t)=s(t)+\text { noise } & \text { (c) WDF of } s(t)\end{array}$
$s(t)=2 \cos (5 t) \exp \left(-t^{2} / 10\right)$
$n(t)=0.5 e^{j 0.23 t^{2}}+0.5 e^{j 0.3 t^{2}+j 8.5 t}+0.5 e^{j 0.46 t^{2}-j 9.6 t}$

GT: Gabor transform, WDF: Wigner distribution function
horizontal: t-axis, vertical: ω-axis

根據斜率來決定 FrFT 的 order 3 times $F_{r} F T$ filters

Example (II)

Signal $+0.7 \exp \left(j 0.032 t^{3}-j 3.4 t\right)$
 How many times of FrFT filfers are required

[Important Theory]:

Using the FT can only filter the noises that do not overlap with the signals in the frequency domain (1-D)

In contrast, using the FRFT can filter the noises that do not overlap with the signals on the time-frequency plane (2-D)

［思考］

Q1：哪些 time－frequency distribution 比較適合處理 filter 或 signal decomposition 的問題？

Q2：Cutoff lines 有可能是非直線的嗎？

[Ref] Z. Zalevsky and D. Mendlovic, "Fractional Wiener filter," Appl. Opt., vol. 35, no. 20, pp. 3930-3936, July 1996.
[Ref] M. A. Kutay, H. M. Ozaktas, O. Arikan, and L. Onural, "Optimal filter in fractional Fourier domains," IEEE Trans. Signal Processing, vol. 45, no. 5, pp. 1129-1143, May 1997.
[Ref] B. Barshan, M. A. Kutay, H. M. Ozaktas, "Optimal filters with linear canonical transformations," Opt. Commun., vol. 135, pp. 32-36, 1997.
[Ref] H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing, New York, John Wiley \& Sons, 2000.
[Ref] S. C. Pei and J. J. Ding, "Relations between Gabor transforms and fractional Fourier transforms and their applications for signal processing," IEEE Trans. Signal Processing, vol. 55, no. 10, pp. 4839-4850, Oct. 2007.

9-2 TF analysis and Random Process

For a random process $x(t)$, we cannot find the explicit value of $x(t)$.
The value of $x(t)$ is expressed as a probability function.

- Auto-covariance function $R_{x}(t, \tau)$ expected
value
$R_{x}(t, \tau)=E\left[x(t+\tau / 2) x^{*}(t-\tau / 2)\right]$

$$
\begin{aligned}
& \text { as a probability function. } \\
& \text { original } \widetilde{R_{x}}(t, \tau)=E(x(t)-E(x(t))(x(\tau)-E(x(\tau))) \\
& \text { definition } \\
& x(t, \tau)
\end{aligned}
$$

In usual, we suppose that

$$
\begin{aligned}
& E\left[x(t+\tau / 2) x^{*}(t-\tau / 2)\right] \\
= & \iint x\left(t+\tau / 2, \zeta_{1}\right) x^{*}\left(t-\tau / 2, \zeta_{2}\right) P\left(\zeta_{1}, \zeta_{2}\right) d \zeta_{1} d \zeta_{2}
\end{aligned}
$$

(alternative definition of the auto-covariance function:

$$
\hat{R}_{x}(t, \tau)=E\left[x(t) x^{*}(t-\tau)\right]
$$

- Power spectral density (PSD) $S_{x}(t, f)$

$$
S_{x}(t, f)=\int_{-\infty}^{\infty} R_{x}(t, \tau) e^{-j 2 \pi f \tau} d \tau=E\left(W_{x}(t, f)\right)
$$

- Relation between the WDF and the random process

$$
\begin{aligned}
E\left[W_{x}(t, f)\right] & =\int_{-\infty}^{\infty} E\left[x(t+\tau / 2) x^{*}(t-\tau / 2)\right] \cdot e^{-j 2 \pi f \tau} \cdot d \tau \\
& =\int_{-\infty}^{\infty} R_{x}(t, \tau) \cdot e^{-j 2 \pi f \tau} \cdot d \tau \\
& =\int_{-\infty}^{\infty} R_{x}(t, \tau) \cdot e^{-j 2 \pi f \tau} \cdot d \tau \\
& =S_{x}(t, f)
\end{aligned}
$$

- Relation between the ambiguity function and the random process

$$
E\left[A_{x}(\eta, \tau)\right]=\int_{-\infty}^{\infty} E\left[x(t+\tau / 2) x^{*}(t-\tau / 2)\right] e^{-j 2 \pi t \eta} d t=\int_{-\infty}^{\infty} R_{x}(t, \tau) e^{-j 2 \pi t \eta} d t
$$

- Stationary random process:
the statistical properties do not change with t.
$E\left(x\left(t_{1}+\frac{\tau}{2}\right) x^{*}\left(t_{1}-\frac{\tau}{2}\right)\right)$
Auto-covariance function $R_{x}\left(t_{1}, \tau\right)=R_{x}\left(t_{2}, \tau\right)=R_{x}(\tau)$

$$
\begin{array}{rlr}
R_{x}(\tau) & =E\left[x(\tau / 2) x^{*}(-\tau / 2)\right] \quad \text { for any } t, \\
& =\iint x\left(\tau / 2, \zeta_{1}\right) x^{*}\left(-\tau / 2, \zeta_{2}\right) P\left(\zeta_{1}, \zeta_{2}\right) d \zeta_{1} d \zeta_{2}
\end{array}
$$

PSD: $\quad S_{x}(f)=\int_{-\infty}^{\infty} R_{x}(\tau) e^{-j 2 \pi f \tau} d \tau$
White noise: $\quad S_{x}(f)=\sigma \quad$ where σ is some constant.

$$
\overline{R_{x}(\tau)=\sigma \delta(\tau)}
$$

- When $x(t)$ is stationary,

$$
\begin{aligned}
& E\left[W_{x}(t, f)\right]=S_{x}(f) \\
& E\left[A_{x}(\eta, \tau)\right]=\int_{-\infty}^{\infty} R_{x}(\tau) \cdot e^{-j 2 \pi t \eta} \cdot d t=R_{x}(\tau) \int_{-\infty}^{\infty} \cdot e^{-j 2 \pi t \eta} \cdot d t=R_{x}(\tau) \delta(\eta)
\end{aligned}
$$

(nonzero only when $\eta=0$)

If $x(t)$ is stationary
$\sqrt{(i)} x(t / a)$
$\left.k_{i i}\right) e^{j 2 \pi f_{0} t} x\left(t-t_{0}\right)$
(iii) $F T(x(t))$
(i)(ii)(v) are stationary (iri)(iv) may be non stationary
(v) $e^{j \pi \frac{t^{2}}{a}} * x(t)$ If $x(t)$ is white (i) (ii)(iir)(iv)(v) are white

- For white noise,

$$
\begin{aligned}
& E\left[W_{x}(t, f)\right]=\sigma \\
& E\left[A_{x}(\eta, \tau)\right]=\sigma \delta(\tau) \delta(\eta)
\end{aligned}
$$

[Ref 1] W. Martin, "Time-frequency analysis of random signals", ICASSP'82, pp. 1325-1328, 1982.
[Ref 2] W. Martin and P. Flandrin, "Wigner-Ville spectrum analysis of nonstationary processed", IEEE Trans. ASSP, vol. 33, no. 6, pp. 1461-1470, Dec. 1983.
[Ref 3] P. Flandrin, "A time-frequency formulation of optimum detection", IEEE Trans. ASSP, vol. 36, pp. 1377-1384, 1988.
[Ref 4] S. C. Pei and J. J. Ding, "Fractional Fourier transform, Wigner distribution, and filter design for stationary and nonstationary random processes," IEEE Trans. Signal Processing, vol. 58, no. 8, pp. 4079-4092, Aug. 2010.

white noise everywhere

$$
\begin{array}{ll}
\text { signal to noise vatio } \\
S N R \approx 10 \log _{10} \frac{E_{\text {signal }}}{\iint_{\substack{(t, f) \in \\
\text { signal part }}} W_{\text {noise }}(t, f) d t d f} & \begin{array}{l}
E_{\text {signal }} \text { : energy of the signal } \\
A \text { : area of the time frequenc } \\
\text { the signal }
\end{array}
\end{array}
$$

$$
S N R \approx 10 \log _{10} \frac{E_{\text {signal }}}{\sigma A}
$$

The PSD of the white noise is $S_{\text {noise }}(f)=\sigma$

- If $E\left[W_{x}(t, f)\right]$ varies with t and $E\left[A_{x}(\eta, \tau)\right]$ is nonzero when $\eta \neq 0$, then $x(t)$ is a non-stationary random process.
- If (1) $h(t)=x_{1}(t)+x_{2}(t)+x_{3}(t)+\cdots \cdots+x_{k}(t)$
(2) $x_{n}(t)$'s have zero mean for all t 's
(3) $x_{n}(t)$'s are mutually independent for all t 's and τ 's

$$
E\left[x_{m}(t+\tau / 2) x_{n}^{*}(t-\tau / 2)\right]=E\left[x_{m}(t+\tau / 2)\right] E\left[x_{n}^{*}(t-\tau / 2)\right]=0
$$

if $m \neq n$, then

$$
E\left[W_{h}(t, f)\right]=\sum_{n=1}^{k} E\left[W_{x_{n}}(t, f)\right], \quad E\left[A_{h}(\eta, \tau)\right]=\sum_{n=1}^{k} E\left[A_{x_{n}}(\eta, \tau)\right]
$$

(1) Random process for the STFT
$E[x(t)] \neq 0$ should be satisfied.
Otherwise,
$E[X(t, f)]=E\left[\int_{t-B}^{t+B} x(\tau) w(t-\tau) e^{-j 2 \pi f \tau} d \tau\right]=\int_{t-B}^{t+B} E[x(\tau)] w(t-\tau) e^{-j 2 \pi f \tau} d \tau$
for zero-mean random process, $E[X(t, f)]=0$
(2) Decompose by the AF and the FRFT

Any non-stationary random process can be expressed as a summation of the fractional Fourier transform (or chirp multiplication) of stationary random process.

An ambiguity function plane can be viewed as a combination of infinite number of radial lines.

Each radial line can be viewed as the fractional Fourier transform of a stationary random process.

信號處理小常識

$$
\begin{array}{ll}
S(f)=\sigma & \text { white noise } \\
\alpha=-1 & S(f)=\frac{\sigma}{|f|} \\
\alpha=1 & \text { pink noise } \\
S(f)=\sigma|f| & \text { purple noise } \\
S(f)=\sigma|f|^{\alpha} & \alpha \neq 0 \quad \text { color noise }
\end{array}
$$

附錄十二 Time－Frequency Analysis 理論發展年表

AD 1785 The Laplace transform was invented
AD 1812 The Fourier transform was invented
AD 1822 The work of the Fourier transform was published
AD 1898 Schuster proposed the periodogram．
AD 1910 The Haar Transform was proposed
AD 1927 Heisenberg discovered the uncertainty principle
AD 1929 The fractional Fourier transform was invented by Wiener
AD 1932 The Wigner distribution function was proposed
AD 1946 The short－time Fourier transform and the Gabor transform was proposed．
In the same year，the computer was invented
註：沒列出發明者的，指的是 transform／distribution 的名稱和發明者的名字相同

AD 1961 Slepian and Pollak found the prolate spheroidal wave function
AD 1965 The Cooley－Tukey algorithm（FFT）was developed
AD 1966 Cohen＇s class distribution was invented
AD 1970s VLSI was developed
AD 1971 Moshinsky and Quesne proposed the linear canonical transform
AD 1980 The fractional Fourier transform was re－invented by Namias
AD 1981 Morlet proposed the wavelet transform
AD 1982 The relations between the random process and the Wigner distribution function was found by Martin and Flandrin

AD 1988 Mallat and Meyer proposed the multiresolution structure of the wavelet transform；
In the same year，Daubechies proposed the compact support orthogonal wavelet
註：沒列出發明者的，指的是 transform／distribution 的名稱和發明者
的名字相同

AD 1989 The Choi-Williams distribution was proposed; In the same year, Mallat proposed the fast wavelet transform

AD 1990 The cone-Shape distribution was proposed by Zhao, Atlas, and Marks
AD 1990s The discrete wavelet transform was widely used in image processing
AD 1992 The generalized wavelet transform was proposed by Wilson et. al.
AD 1993 Mallat and Zhang proposed the matching pursuit;
In the same year, the rotation relation between the WDF and the fractional Fourier transform was found by Lohmann

AD 1994 The applications of the fractional Fourier transform in signal processing were found by Almeida, Ozaktas, Wolf, Lohmann, and Pei;
Boashash and O'Shea developed polynomial Wigner-Ville distributions
AD 1995 Auger and Flandrin proposed time-frequency reassignment
L. J. Stankovic, S. Stankovic, and Fakultet proposed the pseudo Wigner distribution

AD 1996 Stockwell, Mansinha, and Lowe proposed the \underline{S} transform
Daubechies and Maes proposed the synchrosqueezing transform
AD 1998 N. E. Huang proposed the Hilbert-Huang transform
Chen, Donoho, and Saunders proposed the basis pursuit
AD 1999 Bultan proposed the four-parameter atom (i.e., the chirplet)
AD 2000 The standard of JPEG 2000 was published by ISO
Another wavelet-based compression algorithm, SPIHT, was proposed by Kim, Xiong, and Pearlman

The curvelet was developed by Donoho and Candes
AD 2000s The applications of the Hilbert Huang transform in signal processing, climate analysis, geology, economics, and speech were developed

AD 2002 The bandlet was developed by Mallet and Peyre; Stankovic proposed the time frequency distribution with complex arguments

AD 2003 Pinnegar and Mansinha proposed the general form of the S transform
Liebling et al. proposed the Fresnelet.
AD 2005 The contourlet was developed by Do and Vetterli;
The shearlet was developed by Kutyniok and Labate
The generalized spectrogram was proposed by Boggiatto, et al.
AD 2006 Donoho proposed compressive sensing
AD 2006~ Accelerometer signal analysis becomes a new application.
AD 2007 The Gabor-Wigner transform was proposed by Pei and Ding
AD 2007 The multiscale STFT was proposed by Zhong and Zeng.
AD 2007~ Many theories about compressive sensing were developed by Donoho, Candes, Tao, Zhang

AD 2010~ Many applications about compressive sensing are found.
AD 2012 The generalized synchrosqueezing transform was proposed by Li and Liang

AD 2015～Time－frequency analysis was widely combined with the deep learning technique for signal identification
The second－order synchrosqueezing transform was proposed by Oberlin，Meignen，and Perrier．
AD 2017 The wavelet convolutional neural network was proposed by Kang et al． The higher order synchrosqueezing transform was proposed by Pham and Meignen
AD 2018～With the fast development of hardware and software，the time－ frequency distribution of a 10^{6}－point data can be analyzed efficiently within 0．1 Second

時頻分析理論與應用未來的發展，還看各位同學們大顯身手

