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I1X. Applications of Time-Frequency Analysis
for Filter Design

9-1 Signal Decomposition and Filter Design

Signal Decomposition: Decompose a signal into several components.

Filter: Remove the undesired component of a signal

(1) Decomposing in the time domain

component 1 : component 2

; » f-axis
! tO

criterion
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(2) Decomposing in the frequency domain

x(t) =sin(4zt) + cos(107¢)

5 12 2 5 f-axis

e Sometimes, signal and noise are separable in the time domain —
(1) without any transform

e Sometimes, signal and noise are separable in the frequency domain —
2) using the FT tional filt
(2) using the FT (conventional filter) HE:) for | £1< 6,

2<$<H

x,O=IFT[FT&OHWD]  Hie):0 ¢4 1o >

e [f signal and noise are not separable in both the time and the frequency
domains —
(3) Using the fractional Fourier transform and time-frequency analysis
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"R & 47 el BE o criterion in the time domain 4 5§ *% cutoff line

perpendicular to #-axis

' f~axis

§cut0ff line

Ly [-axis

Y2 pEAE A 47 e L 0 criterion in the frequency domain 4p § 3%

cutoff line perpendicular to f-axis

cutoff line




x(¢) = triangular signal + chirp noise 0.3exp[j 0.5(¢t —4.4)?] 275

VAN B

'signal + noise

0.5 0.5
-10 5 0 5 10 10 5 0 5 10
3 1 reconstructed signal

FRFT h
2; ¢=-arccot(1/2m) :

10 5 0 5 10




x(¢) = triangular signal + chirp noise 0.3exp[j 0.5(¢t —4.4)?] 276

f-axis
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Decomposing in the time-frequency distribution

Ifx(r)=0fort<T,and t>T,

/4 (t, f ) =0 for¢<T, and t>T, (cutoff lines perpendicular to f-axis)
If X(f)=FTx(¢#)] =0 for f< F,and > F,

W (t.f)=0 forf<F cand /> F, (cutoff lines parallel to t-axis)

What are the cutoff lines with other directions?

with the aid of the FRFT, the LCT, or the Fresnel transform



* Filter designed by the fractional Fourier transform

gt x (6) = IFT[FT(x,(0)H(f)]

x, (£)=0:{0¢ [ % (1) | H (u)

O! means the fractional Fourier transform:

f-axis
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N

~?

noise
Signal \ FRFT
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f-axis
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08 (xt0) =T Teog €7+ |
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x(¢)dt

A

el .

\\

cutoff line
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S(u): Step function
$(u):=Q

forud 0

(1) ¢ & cutoff line fr f-axis 7 dohobw

(2) uy %% cutoff line JE&f fn B £5E 4t

GLA T f %)

Stu)z|
for U > |
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e Effect of the filter designed by the fractional Fourier transform (FRFT): 280

Placing a cutoff line in the direction of (—sing, cos¢)

¢p=0 ¢p=0.157 ¢=0.357 =057
(time domain) 0 : (FT)
A S
¢ D35

7a




2 times of FRET filHers ave veq'u?vea/

f-axis
2" 4 desired part (0.7
cutoff line P

undesired

r-axis
undesire
part

cutoff line

'S;W P cutoff !mc 6=7 uy="?
Qre ah( P‘) 7(3{-‘-): O"¢z(o
t 8 | S o, w08 (D HM)
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Uo = +.c. Pa: arcdon( T
TEr R Uyr 9 ()

-

-
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Ha(W)= ) for u> Uy, Ha(u)=0 for U< us
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e The Fourier transform 1s suitable to filter out the noise that 1s a combination of

sinusoid functions exp(jn,?).

e The fractional Fourier transform (FRFT) 1s suitable to filter out the noise that

1s a combination of higher order exponential functions

exp[j(n, t*+n_ ' +n 02+ L +n,* +n,t)]

For example: chirp function exp(jn, ?)

e With the FRFT, many noises that cannot be removed by the FT will be

filtered out successfully.
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Example (I)
4 10
real part
. imaginary part 5
)
0

1l
) UUUUJU

-10 0 10

-10
10 -10 0 10

t—axis

(a) Signal s(?) (b) () = s(¢) + noise (c) WDF of s(7)

s(t)=2cos(5t)exp(—t*/10)
n(t) = O.Sejo‘mz n O.Sej0.3t2+j8.5t n O.Sej0.46t2—j9.6t

L)z cre)+n ()
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10 10
5 5
0 0
-5 -5
: -10 -10
-10 0 10 -10 0 10 -10 0 10
(d) WDF of f{?) (e) GT of s(¢) (f) GT of A7)

GT: Gabor transform, WDEF: Wigner distribution function

horizontal: t-axis, vertical: w-axis



GWT: Gabor-Wigner transform 285
10

-10 -
-10 0 10 -10 0 10 10 470 10

(g) GWT of f(¥) (h) Cutoff lines on GT (i) Cutoff lines on GWT
2 times of FRFT filfen

5 4L 5 k-2 _FrFT 0 order
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- . - -10
-10 0 10 -10 L1'0'L2 10 -10 0 10

(j) performing the FRFT (k) High pass filter (1) GWT after filter
and calculate the GWT

2
1
0
mean square error
y (MSE) = 0.1128%
- -2
-10 0 10 -10 0 10

(m) recovered signal  (n) recovered signal (green)
and the original signal (blue)
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Example (IT) determinis$ic

Signal + 0.7exp(j0.032¢° — j3.4¢)

, 3
2
1 1
. 0
1

10 -10 0 10

-10 0 . . -10 0 10
(a) Input signal (b) Signal + noise (c) WDF of (b)
10 10 : :

| 2 MSE =
5 0.3013%

0

-5

"0 0 10 -10 0 aA° 10 -10 0 10
(d) Gabor transform of (b) (eKGWT}f (b) (f) Recovered signal
5 cutokf Jines

2 of fhew (an be performed M dhe time dowmean
IFRFT Qritevs

time dowmaTin
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[Important Theory]:

Using the FT can only filter the noises that do not overlap with the signals
in the frequency domain (1-D)

In contrast, using the FRFT can filter the noises that do not overlap with
the signals on the time-frequency plane (2-D)
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Q1: wRi: time-frequency distribution t* #iif & ke J2 filter 2% signal
decomposition K 58 9

Q2: Cutofflines 7 ¥ sc & 2L &R erw§ ?

/ ark aehemlmp / & v, holse  FT I
PRl g —_—
7 « sighal SW‘?/ ——— ;_ Sigual filder _%_;
palt  page 24D -/—%
X @EP(€) .
c X Cd?‘ Y
lhvevse
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[Ref] Z. Zalevsky and D. Mendlovic, “Fractional Wiener filter,” Appl. Opt.,
vol. 35, no. 20, pp. 3930-3936, July 1996.

[Ref] M. A. Kutay, H. M. Ozaktas, O. Arikan, and L. Onural, “Optimal filter
in fractional Fourier domains,” IEEE Trans. Signal Processing, vol. 45,
no. 5, pp. 1129-1143, May 1997.

[Ref] B. Barshan, M. A. Kutay, H. M. Ozaktas, “Optimal filters with linear
canonical transformations,” Opt. Commun., vol. 135, pp. 32-36, 1997.
[Ref] H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier
Transform with Applications in Optics and Signal Processing, New York,

John Wiley & Sons, 2000.

[Ref] S. C. Per and J. J. Ding, “Relations between Gabor transforms and

fractional Fourier transforms and their applications for signal processing,”
IEEE Trans. Signal Processing, vol. 55, no. 10, pp. 4839-4850, Oct.
2007.
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9-2 TF analysis and Random Process

For a random process x(¢), we cannot find the explicit value of x(¢).
The value of x(¢) is expressed as a probability function.

* Auto-covariance function R (7,7) In usual, we suppose that

R (,T)=E|x(t+7/2)x"(t-7/2)] E[x(#)] = 0 for any ¢

E|x(t+7/2)x"(t-7/2)]
:“.x(t+r/2,§’1)x*(t—T/2,§Z)P(§1,§2)d§1d§2

(alternative definition of the auto-covariance function:

R (t,7)=E[x()x'(1-1) ] RultT) = R (J(Jff,t)
* Power spectral density (PSD) S (¢, /) x

S.(t.f)= jin (t,7)e*"*dr
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e Relation between the WDF and the random process

E(w,(t.N)]=]

—00

e 00

o —00

e 00

o —00

=S (¢, f)

« Relation between the ambiguity function and the random process

E[x(t+r/2)x*(t—r/2)]-e_j2”f’ -dr
R (t,7)-e*"/" dr

R (t,7)-e*"/" dr

E[ 4 (n.7)|= J_iE[x(t +7/2)x (1- 7/2)] e/ dt = I_O:O R (t,7)e’*™"" dt

E(X(tA4)) = L’: E (%) wlt =T) e_}m‘oto{t =0
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* Stationary random process:

the statistical properties do not change with ¢ R (£, T) = Rx (9, T )

E(x(S)A*(-3))

Auto-covariance function R_ ( tl,f) =R, ( L, T) =R, ( r)
R (7)= E[x(r/Z)x* (—7/2)] for any ¢,

= [ [x(2/2,6)x (<2/2,8)P(60,8, ) dE e,

PSD: Sx(f)zjin(r)e_ﬂ”der

White noise: S, (f)=0 where ois some constant.
¢
R (7)=00() R4, T)s T (x4 5 xFH-3)
® T30 and #(£43) Ts Tnolependent
of 7((~(~.-;-t)

Rald, 1= E(XEHIN £ (4H-3))
T 0.0, 9]



* When x(¢) 1s stationary, 294

E _Wx (f,f)] =5, (f) (invariant with ¢)
E J. R g /2 -dt =R_ (T)J.:-e_jz”t” -dt:Rx(T)é'(?])

(nonzero only when 7= 0)

pagel28()

a typical E[W (1, f)] for a typical E[A (7, 7)] for
stationary random process stationary random process

hlf')
..05 05
2 T Msinclf) % %(14)
Cuppose ‘rha‘c m+) % s‘fc\{'lohavy bd not wlmtc SIET(X NIO)
which of the followg. <lgnals ave ;{o\‘hu«o\vy7

(Y A(t-3) station avy 4) Qaﬁ‘t 7(( o

<) hon-¢ ti
() A#(2%) $+“'H°“°‘V7/ (3) 93 **7()*) <tationay
(3) FT(AH)) hot s*ak«ohavy(é)g Re '7(( £) hob ctationaty



* For white noise, T alt) 1 white 295
E[W.(e.f)]=0o 4%7" ’
E[Ax (77,7)}205(7)5(77) <

[Ref 1] W. Martin, “Time-frequency analysis of random signals”,
ICASSP’82, pp. 1325-1328, 1982.

[Ref 2] W. Martin and P. Flandrin, “Wigner-Ville spectrum analysis of
nonstationary processed”, IEEE Trans. ASSP, vol. 33, no. 6, pp.
1461-1470, Dec. 1983.

[Ref 3] P. Flandrin, “A time-frequency formulation of optimum
detection” , IEEE Trans. ASSP, vol. 36, pp. 1377-1384, 1988.

[Ref4] S. C. Pei and J. J. Ding, “Fractional Fourier transform, Wigner
distribution, and filter design for stationary and nonstationary
random processes,” IEEE Trans. Signal Processing, vol. 58, no.
8, pp. 4079-4092, Aug. 2010.
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How man, ‘imes of )0

FRFT Pil4es ove
Lf- ax% vequived J

Filter Design for White noise

conventional filter

by TF analysis

%/ % ° white noise everywhere

E;onq: €nergy of the signal

SNR ~ IOIOg szgnal
: _[ j (8, f)didf  A: area of the time frequency distribution of
(t.1)e the signal
signal part

ESl na
SNR ~10log,, o-gAl The PSD of the white noise is S, (f) = o
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. IfE[Wx (l‘,f)} varies with ¢ and E[Ax (77,1)} is nonzero when 77 # 0,

then x(¢) 1s a non-stationary random process.

o If @ h(t)=x(1)+x,()+x,(t)+- +x, (1)
@ x (#)’s have zero mean for all #’s
® x,(¢)’s are mutually independent for all #’s and 7’s
E|x,(t+7/2)x,(t-7/2) |= E[x,(t+7/D)]E| x,(t-7/2) | =0

1f m # n, then

EH e N)= X ()} EL4 (0] = S EL4, (0)

n=1



(1) Random process for the STFT 298

E[x(?)] # 0 should be satisfied.

Otherwise,

t+

E[X(, f)]= E[L_;B x(r)w(t — r)e‘jz”ﬁdr] = _[:: E[x(r)]w(t — r)e‘jZ”der

for zero-mean random process, E[X(¢, /)] =0

(2) Decompose by the AF and the FRFT

Any non-stationary random process can be expressed as a summation
of the fractional Fourier transform (or chirp multiplication) of
stationary random process.



299

An ambiguity function plane can be viewed as a combination of infinite
number of radial lines.

Each radial line can be viewed as the fractional Fourier transform of a
stationary random process.



AL

S( f )=0' white noise
s(= %0 gk nolse
S(f)=G|f| ®x>) Fuvylc noe

S(f):‘7|f|a oa%0

o:0 —> white

color noise

300
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X. Other Applications of Time-Frequency

o Analysis
Applications
\/(1) Finding Instantaneous Frequency \/(13) Acoustics

\(72) Signal Decomposition \/(14) Data Compression
/3) Filter Design (15) Spread Spectrum Analysis
\/4) Sampling Theory (16) System Modeling

(5) Modulation and Multiplexing (17) Economic Data Analysis
V(6) Electromagnetic Wave Propagation (18) Signal Representation
‘/7) Optics (19) Seismology +th 2 vl

(8) Radar System Analysis (20) Geology t@,ﬁ \@
\§9) Random Process Analysis (21) Astronomy % k\ﬁﬁ

(10) Music Signal Analysis E'Cp.Cvl (22) Oceanography Vﬁ»y.fég_

Va1 Bi(z:medical Engineering %‘L—W_ (23) Satellite Signal Analysis {%{- Z
<
\/(12) Ac'c'el?ometer Signal Analysis (24) Image Processing??

o AR,
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10-1 Sampling Theory

Number of sampling points == Sum of areas of time frequency distributions

+ the number of extra parameters

e How to make the area of time-frequency smaller?

(1) Divide into several components.

(2) Use chirp multiplications, chirp convolutions, fractional Fourier
transforms, or linear canonical transforms to reduce the area.

[Ref] X. G. Xia, “On bandlimited signals with fractional Fourier transform,”
IEEE Signal Processing Letters, vol. 3, no. 3, pp. 72-74, March 1996.

[Ref] J. J. Ding, S. C. Pei, and T. Y. Ko, “Higher order modulation and the
efficient sampling algorithm for time variant signal,” European Signal
Processing Conference, pp. 2143-2147, Bucharest, Romania, Aug. 2012.



I# A(%) Ts real
_Analytic Signal Conversion X(£) = X*-1)
¥(1) = 3, (1) = (1) ey (1) X(4€) = X[t~ €)
Anl®) IFT(F (A Hif)
ginie H(E) = HH"P)

Hi|bert +mfom

& .
H(f) = ‘{,J P 0 .pco-r‘t,—‘%» . %p &) 1S veal

Xal£)* X (£) 4 3 H(o) X (+)
= I HI X(P)
X alP) = {2_)([(?) £50 shgle sided band

£<0 (onvercion
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Shearing

shearing
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Step 1 Analytic Signal Conversion

Step 2 Separate the components (a) (b)

A !_ e e :;’_'F.‘_EF T A ) A

e | —_——
,9’,((/‘_,___‘_@;\4{ . S|

_|_

¢

Step 3 Use shearing or rotation to minimize the “area” to each component

3 h?
@ slnmma()‘ chirp) ~ slmaw"g
| A oy — 7 v
26 X chivp  Y,f4)

Step 4 Use the conventional sampling theory to sample each components

v



8 SLenBe ’}i > ;?“

x,[n]=x(nA,) A <1/ F
7 2 = x, [n]sinc(AL—nj
n t
3P4 2 N x, (t):  Hilbert transform of x(¢)

(1) x(t) > x,(1)=x(t)+ jx, (r)  Al¥)= Re (Za($))
2) X, (1) > x, (1) =x, (1) +x, (1) +-+ +xg (1)

(3) y, (1) =exp(j27ma,t’)x, (1) k=1,2,....K
(4) xd,k [n]:yk (nAt,k) k= 1,2, K
:exp(j27mkn2Aik)xk(nAt,k) LY (_FI_

k
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o Wiokth of
7’k (4) alo!9

‘f-O\ms



¥ iE

(1) yk(t)=§xd,k[n]smc(

4

A s

—n
t,k

2) x,(t)=exp(-j27a,1* ) , (1)

(3) x,(t)=x(2)+x,(¢)++x, (¢)

4 x(t)=Re{x,(¢))

J
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FTb'y H))
A

Fde[h] = 7kl”4f|‘)

M (Atk-(‘)

K4 0] ¥ sinc (%‘ﬂ)
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ﬁ*\%’j‘\?ﬁ“ / '—ll%lp )umfﬁ.'}tﬁé}fr’l’m mﬁ%J {’L Klr’r‘)"‘lo

Theorem:
If x(7) 1s time limited (x(¢) =0 for # <¢, and > ¢,)
then it 1s impossible to be frequency limited
If x(7) 1s frequency limited (X(f) = 0 for f </, and /> f,)

then it is impossible to be time limited

e g AT LiE - B “threshold” A

PEAE A 35 | X (4 )] > A & e 3 iha ff 5 1L

Fwr o Taf ) H@mHsHEEk L4887 - LR



F B~ telt, ] and f e [f, f,] datehae £ #ribgnt b

—Q0

x(t)f dt+fo\x(t)\2 d”ﬂ

X(f) dr+] X (1) df

err =

Xi() = FT1x, ()],

j:\x(t)\z dt

x,(t)=x(t) for t € [t, 1,] , x,(t) = O otherwise

e For the Wigner distribution function (WDF)
(O = W e X () = e f)a

j_iji W (¢, f)dfdt = j:‘x(t)‘z dt = energy of x(?).

308
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"Wy XY =] (s

(o de+ [l (O df + [ (1) df
w, (e, f)dfde+ [ [" W, (t.f) dfdt+j°°ij (1, 1) dfit

{
{

A Jeel

Ay
dfdt+.t A f)dfdt+:t ["w. (t.r dfdt+j W, (1, f)dfdt
dfdt+::o:iW(t f)dfdt+:2. W, (1, f)dfdt + j j (¢ f dfdt
2 B | C
Jw ) dr i
[ (o) a A e B
. 5 . [-axis
f‘l I
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10-2 Modulation and Multiplexing

With the aid of
(1) the Gabor transform (or the Gabor-Wigner transform)

(2) horizontal and vertical shifting, dilation, shearing, generalized shearing,
and rotation.

[Ref] C. Mendlovic and A. W. Lohmann, “Space-bandwidth product
adaptation and 1its application to superresolution: fundamentals,”
J. Opt. Soc. Am. A, vol. 14, pp. 558-562, Mar. 1997.

[Ref] S. C. Pei and J. J. Ding, “Relations between Gabor transforms and
fractional Fourier transforms and their applications for
signal processing,” vol. 55, issue 10, pp. 4839-4850, IEEE Trans.
Signal Processing, 2007.
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(a) G(u) con3|sted of 7 components  (b) f(t), the signal to be modulated

FT l We want to add A7) into G(u)

(no empty band)
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s e
Csheqv)q’)
[ time shift
-F requenty
shift
2 | I | /
1 e ‘ ‘\
0 I H“““  \
214 ‘ | ‘ ‘
-20 0 20

(e) multiplexing f(t) into G(u) (f) GWT of (e)



© Conventional Modulation Theory 313

The signals x,(£), x,(2), x;(?), ....... , X (%) can be transmitted successfully if

K
Allowed Bandwidth > ZBk
k=1
B,: the bandwidth (including the negative frequency part) of x,(¢)

© Modulation Theory Based on Time-Frequency Analysis

The signals x,(£), x,(?), x;(?), ....... , X (%) can be transmitted successfully 1f

K
Allowed Time duration x Allowed Bandwidth > Z A,

k=1 Suppose Hhet
time cluvation

-
-

$reg. widlth= |0 ©

A,: the area of the time-frequency distribution of x,(¢)

e The interference is inevitable. 7‘.!{-)" r )Zoooo 60%10° = £x In"
e 500 ™) Avea: |5X5000
\) How to estimate the interference? 0 ke 30 + 5% 20000
S
] =115000
5 2o FRCA@ AR Y 2

- —t 5000
Al = A F5755) 0skLe0? B
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10-3 Electromagnetic Wave Propagation

Time-Frequency analysis can be used for

Wireless Communication
Optical system analysis
Laser

Radar system analysis

Propagation through the free space (Fresnel transform): chirp convolution

Propagation through the lens or the radar disk: chirp multiplication
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Fresnel Transform : 5 i T &4 &7 F ¢ 1B 3% (See pages 267-271)

B =) S #r' kS TER S tha s 4; bAL L

Fresnel transform == LCT with parameters {a b } _ F Az }
c d 0 1

: (1) STFT &8 WDF ¥R— i v ﬁ*ﬁb * P A A e 9
(2) 5 Pk L AREOT Y T F ¢ AT AES D



316
(4) Spherical Disk

~axis
Y A

FaX1S

- > direction of wave
R propagation

radius of the
plane disk = R

a b 1 0
. .»ﬂ\_/\ j— y 2 ,i—,;
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0 E* LCT |a b :_ 1 OIll AD 1 0
c d _I/ZRB 10 1 ~1/AR, 1

| 1-D/R, ~AD
—%(Rj ~R;'+R;'R,'D) 1+D/R,




10-3 Accelerometer Signal Analysis

318

The 3-D Accelerometer (= #h4ci# 3) can be used for identifying the

activity of a person.

Z-axX1$

y-axis

X-axIs

/i\ Z-ax1s y: 0
z: -9.8
__________________________ >
y-axis
tilted by 6
[N Z-axI1s
| 7 .
<" y-axis
y: -9.8s1n6

z: -9.8cosl
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Using the 3D accelerometer + time-frequency analysis, one can analyze
the activity of a person.

Walk, Run (Pedometer 3+ %)

Healthcare for the person suffered from Parkinson’s disease
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3D accelerometer signal for a person suffering from Parkinson’s disease

Time =series
2 T Ly 1

Acederation (o)

-2 1 [ 1
o 5 10 15

Tirme (sec)

The result of the short-time Fourier transform

Short-time Fourier transform

Frequency (He)

Time (s=c)

Y. F. Chang, J. J. Ding, H. Hu, Wen-Chieh Yang, and K. H. Lin, “A real-time detection algorithm
for freezing of gait in Parkinson’s disease,” IEEE International Symposium on Circuits and
Systems, Melbourne, Australia, pp. 1312-1315, May 2014
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10-5 Music and Acoustic Signal Analysis

Music Signal Analysis
Acoustic

Voiceprint (Speaker) Recognition

———-—'WW

Speech Signal
(1) # Ipen X s B4 #4737 I (X voiceprint)
Q) F-BARIFGFF > AFHFT - %
(3)5FR (B = 2 ~u Hfoiz ) 3 | > BT

iy 3
4T -BFF  FHf*FIEHETT AR

Ok ot KNS RAd £

o3 | I AUMERILT > xR F o rEDRS SHA ARME o
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(2) (b) (c) (d)
f f f f
large energy middle energy small energy large energy

Typical relations between time and the instantaneous frequencies for (a) the
15t tone, (b) the 2"d tone, (¢) the 3" tone, and (d) the 4™ tone in Chinese.

X. X. Chen, C. N. Cati, P. Guo, and Y. Sun, “A hidden Markov model applied
to Chinese four-tone recognition,” ICASSP, vol. 12, pp. 797-800, 1987.
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10-6 Other Applications

BEAE A 47 Y M R E PR A e e B
Biomedical Engineering («= & B (ECG), "*% B] (EMQG), a7 B, ...... )
Communication and Spread Spectrum Analysis
Economic Data Analysis
Seismology

Geology
Astronomy
Oceanography
Satellite Signal
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Short-time Fourier transform of the power signal from a satellite

JUUr R R R 8 N/ U\

500

450

400

350

300

250

200

150

100

50

2006 5 2007 2007.5 2008 2008.5 20 9 2009 5 2010 2010 5 2011

C.J. Fong, S. K. Yang, N. L. Yen, T. P. Lee, C. Y. Huang, H. F. Tsai, S. Wang, Y. Wang, and J.
J. Ding, “Preliminary studies of the applications of HHT (Hilbert-Huang transform) on
FORMOSAT-3/COSMIC GOX payload trending data,” 6th FORMOSAT-3/COSMIC Data
Users' Workshop, Boulder, Colorado, USA, Oct. 2012
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BT A 4 e

astronomy

satellite

‘\

over
700 km

“~communication

_ human life
vocal signal, ECG
vocal signal v
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(1) Google ¥ jisto=
http://scholar.google.com.tw/

(FE27 AV NUATE) PR ERHT BAGY 0 AR
2

PR T U BN

‘ﬁjﬁé‘ rif'-%?J ?
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4% = Time-Frequency Analysis 2% % & # 4

AD 1785
AD 1812
AD 1822
AD 1898
AD 1910
AD 1927
AD 1929
AD 1932
AD 1946

J

by

-N-\»

Eay

The Laplace transform was invented

The Fourier transform was invented

The work of the Fourier transform was published

Schuster proposed the periodogram.

The Haar Transform was proposed

Heisenberg discovered the uncertainty principle

The fractional Fourier transform was invented by Wiener

The Wigner distribution function was proposed

The short-time Fourier transform and the Gabor transform was
proposed.
In the same year, the computer was invented

|4 P i 4p 9 & transform / distribution £ % A e 3 P K
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AD 1961 Slepian and Pollak found the prolate spheroidal wave function

AD 1965 The Cooley-Tukey algorithm (FFT) was developed

AD 1966 Cohen’s class distribution was invented

AD 1970s VLSI was developed

AD 1971 Moshinsky and Quesne proposed the linear canonical transform

AD 1980 The fractional Fourier transform was re-invented by Namias

AD 1981 Morlet proposed the wavelet transform

AD 1982 The relations between the random process and the Wigner distribution
function was found by Martin and Flandrin

AD 1988 Mallat and Meyer proposed the multiresolution structure of the wavelet
transform;
In the same year, Daubechies proposed the compact support
orthogonal wavelet

12 A A —‘ﬁ i1 > 4p e0&_transform / distribution 7 & {3 P *‘ﬁ
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AD 1989 The Choi-Williams distribution was proposed; In the same year, Mallat

proposed the fast wavelet transform
Kontis proposed the chromagram. (# #74v#& % 77 chromagram # < )

AD 1990 The cone-Shape distribution was proposed by Zhao, Atlas, and Marks

AD 1990s The discrete wavelet transform was widely used in image processing

AD 1992 The generalized wavelet transform was proposed by Wilson et. al.

AD 1993 Mallat and Zhang proposed the matching pursuit;
In the same year, the rotation relation between the WDF and the
fractional Fourier transform was found by Lohmann

AD 1994 The applications of the fractional Fourier transform in signal processing
were found by Almeida, Ozaktas, Wolf, Lohmann, and Pei;
Boashash and O’Shea developed polynomial Wigner-Ville distributions

AD 1995 Auger and Flandrin proposed time-frequency reassignment

L. J. Stankovic, S. Stankovic, and Fakultet proposed the pseudo
Wigner distribution
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AD 1995 Katkovnik proposed the local polynomial Fourier transform and the

local polynomial time-frequency transform

AD 1996 Stockwell, Mansinha, and Lowe proposed the S transform

Daubechies and Maes proposed the synchrosqueezing transform

AD 1998 N. E. Huang proposed the Hilbert-Huang transform

Chen, Donoho, and Saunders proposed the basis pursuit

AD 1999 Bultan proposed the four-parameter atom (i.€., the chirplet)

Wakefield applied the chromagram in music signal processing.

AD 2000 The standard of JPEG 2000 was published by ISO

Another wavelet-based compression algorithm, SPIHT, was proposed
by Kim, Xiong, and Pearlman

The curvelet was developed by Donoho and Candes

AD 2000s The applications of the Hilbert Huang transform in signal processing,
climate analysis, geology, economics, and speech were developed
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AD 2002 The bandlet was developed by Mallet and Peyre;

Stankovic proposed the time frequency distribution with complex
arguments

AD 2003 Pinnegar and Mansinha proposed the general form of the S transform

Liebling et al. proposed the Fresnelet.

AD 2005 The contourlet was developed by Do and Vetterli;
The shearlet was developed by Kutyniok and Labate

The generalized spectrogram was proposed by Boggiatto, et al.

AD 2006 Donoho proposed compressive sensing

AD 2006~ Accelerometer signal analysis becomes a new application.
AD 2007 The Gabor-Wigner transform was proposed by Pei and Ding
AD 2007 The multiscale STFT was proposed by Zhong and Zeng.

AD 2007~ Many theories about compressive sensing were developed by Donoho,

Candes, Tao, Zhang ....

AD 2010~ Many applications about compressive sensing are found.
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AD 2012 The generalized synchrosqueezing transform was proposed by Li and
Liang

AD 2014 The variational mode decomposition was proposed by Dragomiretskiy
and Zo0sso

AD 2015~ Time-frequency analysis was widely combined with the deep
learning technique for signal identification

The second-order synchrosqueezing transform was proposed by
Oberlin, Meignen, and Perrier.

AD 2017 The wavelet convolutional neural network was proposed by Kang et al.

The higher order synchrosqueezing transform was proposed by Pham
and Meignen

AD 2018 Shen et al applied the Mel spectrogram in speech recognition.

AD 2018~ With the fast development of hardware and software, the time-
frequency distribution of a 10%-point data can be analyzed efficiently
within 0.1 Second

AT A FTIEGE t AR R > BR LR B P AL S



XI. Hilbert Huang Transform (HHT)

Proposed by & 42X (AD. 1998)

F4Epad cnd T LS

http://djj.ee.ntu.edu.tw/%E9%BBY%83%E9%8D%94%E9%99%A2%E5%A3
%AB.pdf
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11-A The Origin of the Concept

Another instantaneous frequency analysis method : Hilbert transform

e Hilbert transform

on () a’r

o x,(t)=IFT{FT[x(t)]H(f))
H(f) ] odd S)’V\he‘(’ﬂL

Ji=X0 > f-axis




339
Applications of the Hilbert Transform

e analytic signal
x, (1) = (1) + jx, (1)
e edge detection il

e another way to define the instantaneous frequency: | | ‘

- 1d -4 0 %
instantaneous frequency = 5 dte /‘
-(o(',
l/

where @ =tan™' X (t)l

3 P> x(tl’[‘r- . - “f%(&ymﬂ) -
Example: —H ~€~I—;/z. = 7 S(dwp.() et
cos (27 ft ) —2 >¢sin(27zﬁ) 0 =2rfi %53%9:2-7;; - {

- Sam

- e

sin(27 i) S o5 (2 /) O =2xfi )2 %nﬁ‘:cez'(z'

2 f4)).
sin (2 £4) B Ouctan ("siw (27 'FD)

.:chu + LY cancdan(—cot(ax Fe)z 28 +~

"
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Problem of using Hilbert transforms to determine the instantaneous frequency:

This method 1s only good for cosine and sine functions with single component.

Not suitable for (1) complex function
(2) non-sinusoid-like function

(3) multiple components

Moreover, (4) & has multiple solutions. _
st{x )4 s (B) =251n (ﬂ) (¢ (u
Example: o Y-y co (o) + (osfg):lros(fg-g-) (o‘(ﬁ;_g_)

cos(27 1)+ cos (27 fot ) ——sin (27 f;t ) +sin (27 £
8 avcta n( ST EE) + ¢ N\ () 4 25T (£+E01) cog(a (£,-D))

(0¢ (21'?.") t(og (zm{,-t) ZCO‘(R (Qc" P;)") (OS(n{'Prfa)‘
= R(L €)Y
1 do_ ﬁ&(_ )

gt " 2
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e Hilbert-Huang transform 2k & 3 #¢
IMFs

L ¥— B3 E. L & 7 B sinusoid-like components + trend

A

(= Fourier analysis # e g5~ = {3t > i% i sinusoid-like components
71 period fr amplitude ¥ 14 7 H_F Z_e)

f i@ * Hilbert transform (2% STFT > number of zero crossings) * & $7%
components 77 instantaneous frequency

% > * Z * 3] Fourier transform
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?eheVaiiaaftm o

LII-B Intrinsg Mode Function (IMF) * $tnuceted Lunctions

0 Amplitude and frequency can vary with time. ANAAAS -

8 i A local maximums & local minimums T
/A Al) CA(HEA) .

(1) The number of extremes and the number of zero-crossings must either ~

equal or differ at most by one. = local maximums > 0O
local minimuims <O

(2) At any point, the_mean value of the envelope defined by the local maxima
(1) IMEand the envelope defined by the local minima is near to zero. GwWIMF

veal part of %_

CLU‘VP 0.1 |
cos(mrTfd (v) not IMF

(T;) I MF ok :; - ”V ~ \ IR LA AN LA I S N S S WY S N S a—-
(T 5‘{ ]
'/\/\]AVAY' N L
(WD) IMF i
R g L R Ry

-0.1 1 I I 1 I 1 1 1 L
4.2 4.4 4.6 4.8 5 5.2




11-C Procedure of the Hilbert Huang Transform

Steps 1~8 are called Empirical Mode Decomposition (EMD)

(Step 1) Initial: y(¢) = x(¢), (x(¢) 1s the input) n =1, k=1

(Step 2) Find the local peaks Y[(+) 2> Y(++2)
Y€ > y(t-5)

2 °
1

PY [ )
0 \ o

-1

Ww—

343
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(Step 3) Connect local peaks

IMF 1; iteration 0

i ¥ @ * B-spline » £ 2 §_cubic B-spline % i #

(% st - ) Poges 365-3L5
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(Step 4) Find the local dips

(Step 5) Connect the local dips

IMF 1; iteration 0

errllax (1)
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(Step 6-1) Compute the mean

IMF 1; iteration 0

(D) +e, (1)
z(t) = 5

(pink line)



(Step 6-2) Compute the residue

1.5

1

0.5

0

-0.5

-1

-1.5

AN

4

R N TN

\\\/—\/’_‘ “\\ PO
~

\\\///\/\ -

h (1) = y(t) = z(1)
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(Step 7) Check whether 4,(¢) 1s an intrinsic mode function (IMF)

)

(1) ¥ & €_% local maximums ¥ = ** 0
local minimums ‘& -] ** 0

) Ere tou(®) T EE D uh)

,}%ﬁ{@ ul(t)—i_uO(t)

<threshold  forall¢
thy

If they are satisfied (or k£ = K), set ¢, (f) = h,(¢) and continue to Step 8

c,(t) is the n™ IMF of x(?).

If not, set y(¢) = h(2),
k=k+ 1, and repeat Steps 2~6

(37 @ALELERE > T L LK)
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(Step 8) Calculate Xo(#) =x(#)— Z c,(?)

s=1

and check whether x(7) 1s a function with no more than one extreme point.

e
Ifnot,set n=nt+l, () =xy?) )
and repeat Steps 2~7 ) /W
If so, the empirical mode decomposition is completed.
Set
Step 8
»(t) = x(0) Step 7 SIS
h (Z‘) 1S an Yes ,Xo(f) has Y
Step 1 44=€)# Steps 2~6 g kIMF? '—’C"(t)—"; only 0~3 [° 3 Step 9
' =h() /
h=\ [ \.extreme? |/
WO =h(@ N ol O\
trend

Y1) = x(0) n=n+l
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x(t) = x,(1)+ D _c,(7)

(Step 9) Find the instantaneous frequency for each IMF ¢ (?) (s =1, 2, ..., n).
Method 1: Using the Hilbert transform
Method 2: Calculating the STFT for c (7).

Method 3: Furthermore, we can also calculate the instantaneous frequency

from the number of zero-crossings directly. -’\-f« -
| Yenod =2 2ero (vosgings
IMF
instantaneous frequency F(¢) of ¢ (¢)

_ the number of zero-crossings of ¢ (¢) between ¢ — B and ¢ + B
4B
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Technique Problems of the Hilbert Huang Transtorm

(A) B AL R 4

Pag ARG - Ren> 2 > 7 (7073 385

(1) ¥ i * 238 7 &0 extreme points d )3 ‘J_Z ?f" ESE
(2) #-B = ~ B+ gL E & F_extreme points ex'hem potnts
(3) FFRIf 2 *F 2 extreme points iz § fr 4 ;qb_x ex eine painig
(‘4}) ’** 30 jfﬁrszi £ extreme point eIEE 4t 7\ b g7 P& FLQ PR I&
¥ °° extreme points A +
{ — (ho
ol " extvewe
o mizg A
(B) Noise 1 4% a.; 2 extveme
£ % pre-filter X d2 7 W

N M\
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Bz > B EEE_FE & F 2 _extreme points
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11-D Example 3 4) 2302 <!
P Frlpat) <02 5'(f)

Example 1 x(¢7)=0.2¢+cos(27t)+0.4cos(107¢)

)
- trend |

After Step 6 °/

PTHBFH

~ 1 3 }
S0t +(~s(2’t")0 |
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2
IMF1 ° X(+)-IMF]
=0-4eos(iDnY)
-2

0 % > 3 s 5 6 / : L ﬁ
2
IMF2
= cos(2mt ) Or i

-2 | | | | | | | | |

0 1 2 3 4 5 6 7 8 9 10

il \ \ \ \ \ ‘ : ‘H
xo(?) l
ot |

0 1 2 3 4 5 6 7 8 9 10



Example 2

hum signal

IMF1

IMF2

0.1

0.05

-0.05

-0.1

0.2

0.1

-0.1

-0.2

IMFA1
| |
0.4 0.5
IMF2
| |
0.4 0.5

Time
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IMF3

IMF4

IMF5

IMF6

-0.4

-0.2 +

-0.4

0.4

IMF3

0.2 -

0.4

0.3 0.4 0.5 0.6 0.7

IMF4

0.2 -

0.1

0.05

-0.05

-0.1

0.04

0.02

-0.02

-0.04

0.3 0.4 0.5 0.6 0.7
Time

IMF5

0.1

0.2

0.3 0.4 0.5 0.6 0.7

IMF6

0.1

0.2

0.3 0.4 0.5 0.6 0.7
Time
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IMFE7

IMFS

IMF9

IMF10

0.01

0.005

-0.005

-0.01
(o]

0.01

0.005

-0.005

-0.01
(0]

10

10

IMF7

0.2

0.3

0.4 0.5 0.6 0.7

IMF8

0.2

0.3

0.4 0.5 0.6 0.7

10

0.1

0.2

0.3

0.4 0.5 0.6 0.7

IMF10

0.1

0.2

0.3

0.4 0.5 0.6 0.7
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IMF11 0

-2

-4

-1.5

IMF11

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1

0.2

0.3

0.4
Time

0.5

0.6

0.7
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11-E Comparison

(1) ¥ & 7 A7 feenge§ W am & 47

(2) ¥ 45 |- B function e T 4B % |
(3) frdl i chpE AT A 45— 48 > T 04 A {4 &
(4) if £ [ Climate analysis

—  Economical data

| Geology
Acoustics

Music signal

LR e

S

P

J1
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e Conclusion

3R ARE

B 4 _d ° B S B sinusoid functions #1E & @ = > @ ¥ i sinusoid
functions 7 amplitudes p £ ¥ 7R pF » ¥ 1 % HHT Xk & 45
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4% — Interpolation and the B-Spline

Suppose that the sampling points are ¢, t,, t5, ..., ty
and we have known the values of x(¢) at these sampling points.

There are several ways for interpolation.

(1) The simplest way: Using the straight lines (i.e., linear interpolation)




(2) Lagrange interpolation 362

H(f—f,) I3 8l 5 @ 5
N J=l
#n N
x@)=> "% x(t,) [1# =nmhh - h,
n=1 th . tj -
j=1
J#n

Example: When N =4,

(t—t,)t—t)(t—t,)
(t, —1,)(t, —t,)(t, —t,)

(t t)(t—t,)(t—-1,)
(t —t)(t, —t,)(t, —t,)

(t=t)(t—t)(t-t,)
(t, —1,)(t, —t,)(t, —t)

(t =)t —1,)(t —1,)
(6 — 1)ty —1,)(t, — 1)

x(1) = x() +

x(t;) +

x(t,)



(3) Polynomial interpolation

N
x(t) = Z ant"_l, solve a,, a,, as, ...... ;
n=l1
1o g B e ][ x(8)
1 ¢, ¢ £ a, || x(t,)
1 ¢ f 6| a, x(1,)
RN ty lay ] [x(ty)
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(4) Lowpass Filter Interpolation

if * ** sampling interval = # 2 A; ¢, —t,=A, foralln

x(¢) = ZN:x(tn)sinc(t;t”j

t

discrete time

: lowpass mask
X(t) Fourier transform X,(H

X(f)

v

inverse discrete time
Fourier transform

(0
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(5) B-Spline Interpolation

B-spline fj # = spline

B ,(t)=1 for¢,<t<t,

B ,(t)=0 otherwise

I—1

A —1
B ()= "B 1)+ B t
n,m( ) t —t n,m—l( ) t _tn+1 n+1,m—1( )

n+m n n+m+l

fort, <t<t, .

x(t) = Zx )B,. (1) Baml€): Mt ohle polynonta)

m=1: linear B-spline  A(t) & toutinuoag , A'(€) s not coutinuoy Py
m=2: quadratic B-spline 7(%), %'(4) are (mstinuous, X" (€) ts not Centinug
m=73

cubic B-spline (i ¥ & * ) x(1), x'(t), x"(t) are continuous
A"(%) 1s not contluous
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In Matlab - the command “spline” can be used for spline interpolation.

(Note : In the command, the cubic B-spline 1s used)

Cubic B-Spline Interpolation by Matlab:
Generating a sine-like spline curve and samples it over a finer mesh:

x=0:1:10; % original sampling points
y = sin(x);

xx =0:0.1:10.2; % new sampling points
yy = spline(x,yxx); ~value ot x

plot(x,y,'0",xX,yy) X locotions of local mayimuing
MiNnTmum $
l: Values at ¥

Xt 0:040:10
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In Python, we can use the following way to perform cubic B-spline
interpolation.

T ER e d

pip install numpy

0.75 A

. . 0.50 A
pip install scipy

pip install matplotlib .

0.00 A

—0.25 A

—0.50 A

-0.75 -

—1.00 A

0 2 4 6 8 10
Reference :
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.inter
polate.interp1ld.html#scipy.interpolate.interpld
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Cubic B-Spline Interpolation by Python

import numpy as np

import scipy.interpolate as interpolate

import matplotlib.pyplot as plt

x = np.arange(0, 11) # original sample points, [0, 1, 2, ..., 9, 10]

y = np.sin(X) X locations of lo cal W?W“WS
t, ¢, k = interpolate.splrep(x, y, k=3) y: the valyes of ym lias
x_new =np.arange(0, 10.3,0.1) (0, [0:1,0:1)

# new sample points, [0, 0.1, 0.2, ....., 10, 10.1, 10.2]

f = interpolate.BSpline(t, c, k)

y_new = f(X_new)

plt.plot(x,y,'0",x_new, y new)

plt.show()



