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Abstract
The Wiener filter was introduced by Norbert Wiener in the 1940's and published in 1949 in signal processing. A major contribution was the use of a statistical model for the estimated signal (the Bayesian approach!). And the Wiener filter solves the signal estimation problem for stationary signals. Because the theory behind this filter assumes that the inputs are stationary, a wiener filter is not an adaptive filter. So the filter is optimal in the sense of the MMSE. The wiener filter’s main purpose is to reduce the amount of noise present in a signal by comparison with an estimation of the desired noiseless signal.
As we shall see, the Kalman filter solves the corresponding filtering problem in greater generality, for non-stationary signals. We shall focus here on the discrete-time version of the Wiener filter.


























I. Introduction of wiener function
Wiener filters are a class of optimum linear filters which involve linear estimation of a desired signal sequence from another related sequence. In the statistical approach to the solution of the linear filtering problem, we assume the availability of certain statistical parameters (e.g. mean and correlation functions) of the useful signal and unwanted additive noise. The goal of the Wiener filter is to filter out noise that has corrupted a signal. It is based on a statistical approach. The problem is to design a linear filter with the noisy data as input and the requirement of minimizing the effect of the noise at the filter output according to some statistical criterion. A useful approach to this filter-optimization problem is to minimize the mean-square value of the error signal that is defined as the difference between some desired response and the actual filter output. For stationary inputs, the resulting solution is commonly known as the Weiner filter.
	The Weiner filter is inadequate for dealing with situations in which nonstationarity of the signal and/or noise is intrinsic to the problem. In such situations, the optimum filter has to be assumed a time-varying form. A highly successful solution to this more difficult problem is found in the Kalman filter.

	Now we summarize some Wiener filters characteristics
· Assumption: 
Signal and (additive) noise are stationary linear stochastic processes with known spectral characteristics or known autocorrelation and cross-correlation
· Requirement:
We want to find the linear MMSE estimate of  based on (all or part of) 	. So there are three versions of this problem:
a. The causal filter:
[image: ]

b. The non-causal filter:
[image: ]

c. The FIR filter:
[image: ]
And we consider in this tutorial the FIR case for simplicity.
































II. Wiener Filter － The Linear Optimal filtering problem
There is a signal model, showed in Fig. 1, 

[image: ]




Fig. 1 A signal model

Where u(n) is the measured value of the desired signal d(n). And there are some examples of measurement process:

· Additives noise problem   u(n) = d(n) + v(n)
· Linear measurement      u(n) = d(n)* h(n) + v(n)
· Simple delay            u(n) = d(n −1) + v(n)  
=> It becomes a prediction problem
· Interference problem      u(n) = d(n) + i(n) + v(n)

And the filtering main problem is to find an estimation of d(n) by applying a linear filter on u(n)

[image: ]

Fig. 2 The filtering goal

When the filter is restricted to be a linear filter => it is a linear filtering problem. Then  the filter is designed to optimize a performance index of the filtering process, such as
· 
· 
· 
· 
· 
  Solving  is a linear optimal filtering problem

The whole process can indicate Fig. 3

[image: ]

Fig. 3

where the output is 

a. Linear Estimation with Mean-Square Error Criterion
Fig. 4 shows the block schematic of a linear discrete-time filter  for estimating a desired signal  based on an excitation . We assume that both  and  are random processes (discrete-time random signals). The filter output is  and  is the estimation error.

[image: ]

Fig. 4 

To find the optimum filter parameters, the cost function or performance function must be selected. In choosing a performance function the following points have to be considered：
1. The performance function must be mathematically tractable.
2. The performance function should preferably have a single minimum so that the optimum set of the filter parameters could be selected unambiguously.

The number of minima points for a performance function is closely related to the filter structure. The recursive (IIR) filters, in general, result in performance function that may have many minima, whereas the non-recursive (FIR) filters are guaranteed to have a single global minimum point if a proper performance function is used.
In Weiner filter, the performance function is chosen to be



This is also called “mean-square error criterion”























III. Wiener Filter － The Real-Valued Case
Fig. 5 shows a transversal filter (FIR) with tap weights .


[image: ]

Fig. 5
Let





The output is


Thus we may write



The performance function, or cost function, is then given by


 
 

Now we define the Nx1 cross-correlation vector



and the NxN autocorrelation matrix




Also we note that




Thus we obtain



Equation 4 is a quadratic function of the tap-weight vector  with a single global minimum. We note that  has to be a positive definite matrix in order to have a unique minimum point in the w-space.

a. Minimization of performance function
To obtain the set of tap weights that minimize the performance function, 
we set


or



where is the gradient vector defined as the column vector



and zero vector  is defined as N-component vector



Equation 4 can be expanded as



and  can be expanded as



Then we obtain



By setting , we obtain



Note that



The symmetry property of autocorrelation function of real-valued signal, we have the relation



Equation 5 then becomes



In matrix notation, we then obtain



where  is the optimum tap-weight vector.
Equation 6 is also known as the Wiener-Hopf equation, which has the solution



assuming that  has inverse.

b. Error performance surface for FIR filtering
By , it can be deduced that , and  is defined as the error performance surface over all possible weights .

c. Explicit form of 
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d. Canonical form of 
 can be written in matrix form as 



And by







· The Hermitian property of  has been used, 

Then  can be put into a perfect square-form as



The squared form can yield the minimum MSE explicitly as



 is found, we have the minimum value of  is




Equation 7 can also expressed as



And the squared form becomes



where 

If  is written in its similarity form, then  can be put into a more informative form named Canonical Form.

Using the eigen-decomposition , we have



Where  is the transformed vector of  in the eigenspace of .
In eigenspace the  in  are the decoupled tape-errors, then we have





where  is the error power of each coefficients in the eigenspace and  is the weighting (ie. relative importance) of each coefficient error.
IV. Wiener Filter － Principle of Orthogonality 
For linear filtering problem, the wiener solution can be generalized to be a principle as following steps.
1.  The MSE cost function (or performance function) is given by



By the chain rule,



where 



Since  is independent of  , we get



Then we obtain



2. When the Wiener filter tap, which weights are set to their optimal values,



Hence, if  is the estimation error when  are set to their optimal values, then equation 8 becomes



For the ergodic random process, 




On the other hands, the estimation error is orthogonal to input  for all  (Note:  and  are treated as vectors !).
That is, the estimation error is uncorrelated with the filter tap inputs, . This is known as “ the principles of orthogonality”.

3. We can also show that the optimal filter output is also uncorrelated with the estimation error. That is



This result indicates that the optimized Weiner filter output and the
estimation error are “orthogonal”.
The orthogonality principle is important in that it can be generalized to many complicated linear filtering or linear estimation problem.

a. See the Wiener-Hopf Equation by Principle of Orthogonality
Wiener-Hopf equation is a special case of the orthogonality principle, when  which is the linear prediction problem. So we can derived Weiner-Hopf equation based on the principle of orthogonality







where 

This is the Wiener-Hopf equation . For optimal FIR filtering problem,  needs not to be , then the Wiener-Hopf equation is  with  being the cross correlation vector of  and .

b. More Of Principle of Orthogonality
Since  is a quadratic function of  's , i.e.,

J

it has a bowel shape in the hyperspace of , which has an unique extreme point at  .
 is also a sufficient condition for minimizing J
[image: ]
This is the principle of orthogonality.
For the 2D case  , the error surface is showed in Fig. 6

[image: ]

Fig. 6 Error surface of 2D case


By


=>Both input and output of the filter are orthogonal to the estimation error .
The vector space interpretation

By  and  , i.e.,  
=>  ,i.e.,  is decomposed into two orthogonal components,

[image: ]









Fig. 7  Estimation value + Estimation error = Desired signal.

In geometric term,  = projection of  on  . This is a reasonable result !



















V. Normalized Performance Function

1. If the optimal filter tap weights are expressed by . The estimation error is then given by



and then





2. We may note that



and we obtain



3. Define  as the normalized performance function, and 



4.   when 
5.	 reaches its minimum value,  when the filter tap-weights are chosen to achieve the minimum mean-squared error. This gives



and we have 

VI. Wiener Filter － The Complex-Valued Case
In many practical applications, the random signals are complex-valued. For example, the baseband signal of QPSK & QAM in data transmission systems. In the Wiener filter for processing complex-valued random signals, the tap-weights are assumed to be complex variables.
The estimation error, , is also complex-valued. We may write



The tap-weight  is expressed by



The gradient of a function with respect to a complex variable  is defined as



The optimum tap-weights of the complex-valued Wiener filter will be obtained from the criterion:



That is,  and 
Since , we have



Noting that






Applying the definition 9, we obtain


and



Thus, equation 10 becomes



The optimum filter tap-weights are obtained when . This givens



where  is the optimum estimation error.
Equation 11 is the “principle of orthogonality” for the case of complex-valued signals in wiener filter.

The Wiener-Hopf equation can be derived as follows:
Define


and



We can also write


and



where H denotes complex-conjugate transpose or Hermitian.
Noting that


and 



from equation 12, we have



and then



where



and



Equation 13 is the Wiener-Hopf equation for the case of complex-valued signals. The minimum performance function is then expressed as



Remarks:
In the derivation of the above Wiener filter we have made assumption that it is causal and finite impulse response, for both real-valued and complex-valued signals.






VII. Wiener Filter － Application

a. Modelling
Consider the modeling problem depicted in Fig. 8

[image: ]

Fig. 8 The model of Modeling

, ,  are assumed to be stationary, zero-mean and uncorrelated with one another. The input to Wiener filter is given by



and the desired output is given by



where  is the impulse response sample of the plant.
The optimum unconstrained Wiener filter transfer function



Note that






Taking Z-transform on both sides of equation 14, we get



To calculate , we must first find the expression for , We can show that



where  is the plant output when the additive noise  is excluded from that.
Moreover, we have



Thus



and we obtain



We note that  is equal to  only when is equal to zero. That is, when  is zero for all values of n. The noise sequence  may be thought of as introduced by a transducer that is used to get samples of the plant input. Replacing z by  in equation 15, we obtain



Define



We obtain



With some mathematic manipulation, we can find the minimum mean-square error, min  , expressed by



The best performance that one can expect from the unconstrained Wiener filter is



and this happens when .
The Wiener filter attempts to estimate that part of the target signal  that is correlated with its own input  and leaves the remaining part of  (i.e.  ) unaffected. This is known as “ the principles of correlation cancellation “.

b. Inverse Modelling
Fig. 9 depicts a channel equalization scenario.
 (
n(n)
)[image: ]

Fig. 9 The model of inverse modeling





      
When the additive noise at the channel output is absent, the equalizer has the following trivial solution:



This implies that  and thus  for all n.
When the channel noise, , is non-zero, the solution provided by equation in modeling may not be optimal.



and



where  is the impulse response of the channel, . From equation in modeling, we obtain



Also



With z 1, we may also write



And then



This is the general solution to the equalization problem when there is no constraint on the equalizer length and, also, it may be let to be non-causal.
Equation 16 can be rewritten as



Let  and define the parameter



where  and are the signal power spectral density and the noise power spectral density, respectively, at the channel output.
We obtain



We note that  is a non-negative quantity, since it is the signal-to-noise power spectral density ratio at the equalizer input.
Also, 

Cancellation of ISI and noise enhancement
Consider the optimized equalizer with frequency response given by



In the frequency regions where the noise is almost absent, the value of is very large and hence



The ISI will be eliminated without any significant enhancement of noise. On the other hand, in the frequency regions where the noise level is high, the value of  is not large and hence the equalizer does not approximate the channel inverse well. This is of course, to prevent noise enhancement.

VIII. Wiener Filter － Implementation Issues
The Wiener (or MSE) solution exists in correlation domain, which needs  to find the ACF and CCF in the Wiener-Hopf equation. This is the original theory developed by Wiener for the linear prediction case given if we have another chance.

[image: ]













Fig. 10 The family of wiener filter in adaptive operation

The existence of Wiener solution depends on the availability of the desired signal , the requirement of  may be avoided by using a model of  or making it to be a constraint (e.g., LCMV). Another requirement for the existence of Wiener solution is that the RP must be stationary to ensure the existence of ACF and CCF representation. Kalman (MV) filtering is the major theory developed for making the Wiener solution adapt to nonstationary signals.

For real time implementation, the requirement of signal statistics (ACF and CCF) must be avoided
=> search solution using LMS or estimate solution blockwise using LS.
Another concern for real time implementation is the computation issues in finding ACF, CCF and the inverse of ACM based on  instead of . Recursive algorithms for finding Wiener solution were developed for the above cases.

· The Levinson-Durbin algorithm is developed for linear prediction filtering.
· Complicated recursive algorithms are used in Kalman filtering and RLS.
· LMS is the simplest recursive algorithm.
· SVD is the major technique for solving the LS solution.

So we do some conclusion, existence and computation are two major problems in finding the Wiener solution. And the existence problem includes: , we can find the computation problem is primarily for finding .

































Summary
	In this tutorial, we described the discrete-time version of Wiener filter theory, which has evolved from the pioneering work of Norbert Wiener on linear optimum filters for continuous-time signals. The importance of Wiener filter lies in the fact that it provides a frame of reference for the linear filtering of stochastic signals, assuming wide-sense stationarity. And the Wiener filter’s main purpose is that the output of filter can close to the desired response by filter out the noise which interference signal.
	The Wiener filter has two important properties:
1. The principle of orthogonality:
The error signal (estimation error) produced by the Wiener filter is orthogonal to its tap inputs.
2. Statistical characterization of the error signal as white noise:
This condition is attained when the filter length matches the order if the multiple regression model describing the generation of the observable data (i.e., the desired response).
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