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The Eigen-Decomposition of Square Matrices

Let A € CV*V,

There exist N eigenvalues A, Ag, ..., An_1, AN.

The eigenvectors vi, vy, ..., Vy_1,Vy are assumed to be linearly independent.
The eigen-equations are Av,, = \,v, forn=1,2,... N.

Then A can be decomposed into

A=VDV} (1)
V:[Vl Vo ... VN_1 VN:|, D:diag()\l,)\g,...,)\N_l,)\N). (2)

Motivating Questions
Q@ What if N linearly independent eigenvectors do not exist? Jordan canonical forms.

© What if the matrix A € CM*" is non-square? Singular value decomposition.
q g p
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Jordan Canonical Form Definition and Examples

Example: Eigen-Decomposition of a Matrix (1/3)

o Find the eigen-decomposition of a matrix A, which is
216
A=10 2 5
00 2

o First, we consider the characteristic equation det (A — AI) = 0.
o For the matrix A in (3), the characteristic equation becomes

2—-A 1 6

det 0 2—-X 5 =(2-)N?*=0.

0 0 2-2A

o Therefore, the eigenvalues of A are 2,2, 2.

@ The eigenvalue 2 has an algebraic multiplicity of 3.

May 28, 2024
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Example: Eigen-Decomposition of a Matrix (2/3)

@ We assume that an eigenvector corresponding to the eigenvalue A = 2 is

L
V1= [041 B ’}’1} .
@ The characteristic equation (A — AI) v; = 0 becomes

01 6| |y 0
00 5| [A]=]0]. (5)
00 0 |m 0
e Equation (5) leads to 51 =y, = 0.
o For simplicity, we set a; = 1.
@ The eigenvector v becomes
1
V] = 0 (6)
0
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Example: Eigen-Decomposition of a Matrix (3/3)

For simplicity, we set a; = 1 in (6).

°
@ There is only one independent solution to the eigenvector of A.
@ The eigenvalue 2 has a geometric multiplicity of 1.

°

Also, there is only one eigen-equation for A:

AVl = (2) Vi. (7)

Can we still decompose A into VIV '?
The matrix V contains the (generalized) eigenvectors of A.

The matrix J contains the eigenvalues of A.
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Example: Generalized Eigenvectors (1/3)

o Continued from the examples from pages 7 to 9
o We define a generalized eigenvector v, € C3 satisfying

(A — /\I) Vo = V1.

016 1
0 0 5[vy= |0
0 00 0
o (Exercise) It can be shown that
0
Vo = 1 )
0

is a solution to (8).

@ In addition, v; and vy are linearly independent.
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Example: Generalized Eigenvectors (2/3)

@ We define another generalized eigenvector v; € C3 satisfying

(A — >\I) V3 = Vo. (11)
016 0
0 0 5|vyg=|1]. (12)
0 00 0
o We select
0
V3 = _lg ) (13)
5

such that (11) is satisfied and vy, vo, and v3 are linearly independent.
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Example: Generalized Eigenvectors (3/3)

o Equations (7), (8), and (11) can be rewritten as

AV1 = )\Vl, A.V2 = )\Vg + vy, AV3 = >\V3 + Vo, (14)
o We obtain
A1 0
A [Vl Vo Vg] = [Vl Vo Vg] 0 X 1]. (15)
——— Ty [0 0 A
% % >

@ Since vy, vy, and v are linearly independent, the matrix V is invertible. We have
A=vJgv (16)

o J is the Jordan canonical form of A.
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Definition and Examples
The Jordan Canonical Form

o We decompose the matrix A € CN*N into VIV .
@ The matrix V contains the (generalized) eigenvectors.
@ The Jordan canonical form J of A is a block diagonal matrix of the form

J:blkdiag<J17J2,...,JK). (17)
o For every k € [K], the Jordan block Ji has the form of
Tr=NIp, +U,,, (18)

for some L, € [N].
The matrix Iy, denotes the identity matrix of size Lj by L.
The matrix Uy, is an upper shift matrix of size Lj by L.
Let (¢,7) € [Lg]®. The (4, j)th entry of Uy, is
[ULk]i,j = Oiy1,5- (19)
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Definiton and Examples
Examples: The Jordan Blocks
o Ifk=1and L, =1, then
Ji=ML +U; =\

(J 1 becomes a scalar)
o If k=2 and L, = 2, then

Ao 1
J2=)\212+U2={2 ]

0 N
o If k=3 and L, = 3, then

A3 10
Tz=Xl+U;=]0 A 1
0 0 X
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Example: The Jordan Canonical Form of a 4-by-4 Matrix (1/4)

o We consider the matrix A

4 0 0 =2

0 4 -2 0
A=10 21 4 o (20)
1 -1 0 4

o From the characteristic equation, the eigenvalues of A are A =2,4,4.6.

@ For A\ = 2, it can be shown that [1 11 1]T is an eigenvector.

@ For A =G, it can be shown that [1 1 —1 —1}T is an eigenvector.
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Example: The Jordan Canonical Form of a 4-by-4 Matrix (2/4)

@ For A =4, the eigenvector is assumed to be vi = [y 1 7 51}T.
@ The equation (A — AI) v; = 0 becomes

0 0 0 =2][m 0
0 0 -2 0 Bi| |0
-1 -1 0 O wl |0 (21)
-1 -1 0 0] [d& 0
@ For A\ = 4, there is only one linearly independent eigenvector:
1
-1
Vi = 0 . (22)
O -
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Example: The Jordan Canonical Form of a 4-by-4 Matrix (3/4)

@ As a result, we need to find the generalized eigenvector vo = [as 2 72 62}T.
@ The equation (A — AI) vy = vy can be expressed as

0 0 0 =2| (o 1
0 0O -2 0 Ba| |1
-1 -1 0 0 vl | 0|’ (23)
-1 -1 0 0 0o 0
o For A = 4, the generalized eigenvector v; is
0
0
—-1/2
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Example: The Jordan Canonical Form of a 4-by-4 Matrix (4/4)

@ Based on the discussions on pages 15, 16, and 17, we obtain

A=vJgv (25)
where
1 1 0 1 2 000
1 -1 0 1 0410
V=11 o /2 -1 |’ T=10040 (26)
1 0 -1/2 -1 000 6
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Example: The Jordan Canonical Form of a 5-by-5 Matrix (1/5)

@ As an example, let the matrix A be

|
OO OO
O OO = O
_ O W = =
S = O
W O = =

—

N

~l

N—r

@ Solving the characteristic equation of A leads to the eigenvalues

AN=2, 4, 4, 4, 4. (28)

o For A\ = 2, it can be shown that [O 010 —1}T is an eigenvector.
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Example: The Jordan Canonical Form of a 5-by-5 Matrix (2/5)

@ For A =4, the eigenvector is assumed to be v = [v; vy w3 w4 vs}T.
o From the equation (A — AI) v = 0, we obtain

00 1 2 1 V1 0
00 1 -2 1 Vo 0
00 -1 0 1 v3| = |0 (29)
00 0 0 O N 0
00 1 0 -1 |vs 0

o For A = 4, there are only two linearly independent solutions, denoted by ¢, and 1;:

¢,=[1 00 0 0], ¢, =0 10 0 0] (30)
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Example: The Jordan Canonical Form of a 5-by-5 Matrix (3/5)

@ For A\ = 4 and the eigenvector ¢, = [1 0 00 0} , we solve the equation
(A — M) ¢, = ¢, for the generalized eigenvector.

o We obtain
00 1 2 1 1
00 1 =2 1 0
00 -1 0 1]|¢,=10 (31)
00 0 0 O 0
00 1 0 -1 0
o A solution to (31) is
=10 0 1/4 1/4 1/4]", (32)

where the first and the second entries of ¢, are set to zero for simplicity.
May 28, 2024 21



Example: The Jordan Canonical Form of a 5-by-5 Matrix (4/5)

@ For A = 4 and the eigenvector ¢, = [O 100 O}T, we solve the equation
(A — AI) v, = 1), for the generalized eigenvector.

o We obtain
00 1 2 1 0
00 1 -2 1 1
00 -1 0 1]ay=|0 (33)
00 0 0 O 0
00 1 0 -1 0
o A solution to (33) is
Yo,=[0 0 1/4 —1/4 1/4]", (34)
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Example: The Jordan Canonical Form of a 5-by-5 Matrix (5/5)

@ Therefore, we can decompose the matrix A into

A=VIV, (35)
where
1 0 0 0 0 ] 4 1 0 0 0]
0 0 1 0 0 04000
vV=1[0 1/4 0 1/4 1 |, J=100410 (36)
0 1/4 0 —1/4 0 00040
|0 1/4 0 1/4 -1 0000 2
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Outline

© Jordan Canonical Form

o The Integer Power of a Matrix
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R The Integer Power of 2 Matrix
The Integer Power of a Matrix

@ We consider the Jordan canonical form of a matrix A € CN*V,
A=vJgv (37)

@ For a non-negative integer «, the matrix power A* becomes

A= (WIV7) (Vv (WIVT) (38)
[e% érrms

— VI (VWVIWV V)T gy (39)
I I

— V7oV, (40)

o (Question) How do you determine J*7
May 28,2024 25



The Integer Power of a Matrix
The Power of J

e From (17), we obtain

J =blkdiag (T, TS, .-, T%) - (41)

o After dropping the subscript Ly in (18) for simplicity, we rewrite the matrix J{ as
o a = « a—t y 10

JTr=M+1U)" = Al U 42

p= 0y =32 () («2)

- ; (2‘) Pt i (43)

@ (Cross reference) The binomial expansion for scalars

(+y)” = f: (Z) T (]:) W - 1!1)!71!' (44)

n=0
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Jordan Canonical Form The Integer Power of a Matrix

Examples of the Powers of U

01000
00100
@ For instance, we assumethat U= | 0 0 0 1 O
00 0O0 1
000O0O
@ The powers of U are
00100 000 T1O0 00001
00010 00001 00 00O
U?=(0000 1|, U=|00000| U'=|00000
00 00O 00000 00000
00 0O0O 000O0O 000O0O

@ It can be shown that U’ = 0 for ¢/ > 5.
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The Integer Power of a Matrix
The General Form of U?

o If ¢ < Ly, then Uf satisfies

1, fn—m=1/¢
Uf — 5n—m = ’ ’ 45
[ Lki|m,n £ {0, otherwise. (#5)

o If ¢ > Ly, then U} =0.
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The General Form of J73.

Powers of a Jordan block

The kth eigenvalue is denoted by \;. Let a be a non-negative integer. Let J be the
kth Jordan block. Then

vl if m=n,
(T =3 ()M, ifn>mand a >n—m, (46)
0, otherwise.
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An Example of J}

o We assumethat k=1, L, =5, anda =3
@ Then

rdan Canonical Form The Integer Power of a Matrix

(DA G)A (A
A (DA
0 A3
0 0
0 0

STEM: Matrix Decompositions
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Example: The Power of a 4-by-4 Matrix (1/2)

@ Find the matrix power A%, where

4 0 0 =2

0 4 -2 0
A= 1 -1 4 ol (47)
-1 -1 0 4

@ According to the example on pages 15 to 18, the matrix power A® becomes

A’ = VTV = Vblkdiag (I3, T3, T3) V. (48)
@ The Jordan blocks are
4 1
\71:27 t72z|:0 4:|7 1-73:67 (49)
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Example: The Power of a 4-by-4 Matrix (2/2)

@ The powers of the Jordan blocks can be expressed as

J=2"=32 (50)
£ (7)) x 44 1024 1280
5 1 —
T2 = {0 £ |70 1024] (51)
T =6 =T776. (52)

@ Substituting (50), (50), and (50) into (48) yields

2464 1440 —656 —3216

1440 2464 —3216 —656
—1936 —1936 2464 1440
—1936 —1936 1440 2464

A’ =

(53)
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Singular Value Decomposition (SVD)

Outline

© Singular Value Decomposition (SVD)
o Definition and Properties
o Matrix Norms and SVD
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SINEOETAVETER DTNV Definition and Properties

Outline

© Singular Value Decomposition (SVD)
o Definition and Properties
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Defiition and Propertics
The Eigen-Decomposition of Hermitian Matrices

o Let A € CV*N and A" = A (Hermitian matrices).
o The eigenvalues A\, Ay, ..., Ay are real numbers.

@ After normalization, the set of eigenvectors {vi,va,...,Vy_1,Vy} is complete
and orthonormal.

@ The eigen-decomposition of a Hermitian matrix A is

N
A=VDV" ="\ v, v (54)
n=1

Motivating Questions
© How do we extend the decomposition to M-by-N (non-square) matrices?
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SINEOETAVETER DTNV Definition and Properties

The Singular Value Decomposition [HJ2013, pp. 150], [GVL2013, pp. 76]

@ We assume that A € C"*V ¢ = min{M, N}, and rank(A) = r.
o There are unitary matrices U € CM>*M and V € CV*¥ | and a square diagonal

matrix
3, = diag (01,09,...,0,). (55)
such that
01203220, >0=0,41="-+=0, (56)
(3, € RMXN if M =N,

(S, o] eR™N M <N,

A =UxV", 2= (57)

%y

€ RMxN if M >N,
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SINEOETAVETER DTNV Definition and Properties

Terminologies

o The scalars 01, 09,...,0, are the singular values of A.
@ The largest singular value of A is denoted by 0,,..(A) = o.
o Let
U = [111 Uy ... UM] S CMXM. (58)
The column vectors uy, us, ..., uy, are the left singular vectors of A.
o Let
V:[Vl Vo ... VN}E(CNXN. (59)
The column vectors vy, vs,..., vy are the right singular vectors of A.

C.-L. Liu (NTU) STEM: Matrix Decompositions May 28, 2024 37



An Example of the SVD

@ It can be verified that

2 2 01 0
A=1]-11 :[ul uy u3] 0 o9 [V1 Vz]H
-1 1] ° Y Lo 0T
=

1 0 0 V8 0 H
=10 —-1/vV2 1/V2 0 2 1/v2 1/v2 .
0 —1/vV2 —1/V2 0 0 [1/\/5 _1/‘/5]

o (Questions) How do we find the singular values and singular vectors for a matrix A?
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SINEOETAVETER DTNV Definition and Properties

SVD and Eigen-Decompositions (1/2)
o Assume that A = UX V" is the SVD of A € CM*V,
o The matrix AA" can be expressed as
AAH = UsVH (UsvH)!
=U (z=x") Ut (60)

@ Remarks on (60):

o The left singular vectors ui, ug, ..., uy, are the eigenvectors of AAH.
o The matrix 3" contains the eigenvalues of AAM.
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SUEARIEE R OOV Definition and Properties
SVD and Eigen-Decompositions (2/2)
o Similarly, the matrix A"A can be expressed as
ARA = (UsvH) Uz vH
=V (='z) v (61)

@ Remarks on (61):

o The right singular vectors vi, Vs, ..., vy are the eigenvectors of AHA.
o The matrix "3 contains the eigenvalues of AAM.

@ How do we find both the left and right singular vectors?
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Relations among U, ¥, and V (1/2)

A Property rephrased from [GVL2013, Corollary 2.4.2]

If A =UXV"is the SVD of A € C*" and M > N, then for i € [N], we have

AVi = o;u;, AHlli = 0;Vj. (62)
@ Proof sketch (1/2): We rewrite the SVD as AV = U3, which is
A[Vl Vo ... VN:|
(01 0 0 ]
0 09 0
=[u1 U ... uy Upny1 ... uM}
0 0 ON
0 O 0 |
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SHUEAVEIT e i HENAB B Definition and Properties

Relations among U, ¥, and V (2/2)

o Proof sketch (2/2): The SVD of A" can be expressed as

AR = (U EQ] VH)H (63)
=V Iz o' U (64)
=V (2, o]U" (65)

Comparing the columns of AU =V [, 0] shows the second equation in (62).
@ Remarks on (65):

o The matrices A and AH have the same singular values.
o The left singular vectors of A become the right singular vectors of AH.
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SINEOETAVETER DTNV Definition and Properties

Computation of the Singular Vectors

o If o; # 0, then (62) can be rewritten as
AVi

i = , 66

w == (66)
Atu,

i = z' 67

vi= 2 (67)

o Implications of (66) and (67)
o If the matrix A, the non-zero singular values, and one set of singular vectors are
provided, we can uniquely determine another set of singular vectors.

C.-L. Liu (NTU) STEM: Matrix Decompositions May 28, 2024
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An Example of the SVD (1/3)

o Consider the matrix A on page 38. We obtain

2 2 8 00
A=|-1 1], AAR =10 2 2
-1 1 02 2

@ The characteristic equation
det(AAH—)\I) =—A=8(A—=4)X=0.
@ The eigenvalues and eigenvectors are
M(AAM) =38, Ao(AAM) =4, As(AAM) =0, 68)

1 0
u = |0f, w = |—-1/Vv2], 1/\/_ . (69)
0 —1/v2 —1/f
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An Example of the SVD (2/3)

@ From the definition of SVD on page 36, we obtain

g1 0
S=10 oyf. (70)
0 0

o According to (60), the matrix XX contains the eigenvalues of AAM.

o2 0 0 800

exH=10 o2 0| =10 4 0 (71)
0 0 0 000
@ Since 01,09 > 0, we obtain
0'1:\/§, 0'2:2. (72)
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SINEOETAVETER DTNV Definition and Properties

An Example of the SVD (3/3)

o Substituting (69) and (72) into (67) yields

a1y A

- . vl (74)

VZ:AHuQ:%F - _11} :12@ :{1/\/5}
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SINEOETAVETTER DTNV Matrix Norms and SVD

Outline

© Singular Value Decomposition (SVD)

e Matrix Norms and SVD
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The Operator Norm [GVL2013, pp. 72]

© The operator norm [|A[[, ; is defined as

| Ax] 5
Al 5 = sup ———". (75)
s x7#0 ”XHa

© [|-[|, 5 is subordinate to the vector norms |||, and ||-|5.
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Marx Norms and SVD
The Matrix p-Norm

o By setting o = 3 = p, the matrix p-norm is defined as

|Ax],
I,

@ According to (76), it can be shown that [HJ2013, pp. 344-345], [GVL2013, pp. 72]:

|A]l, £ sup (76)
x#0

M

41, = max 3 1Al (77)
N

41 = max D2 [(AL] (78)

o If p=2, then ||A||, is the matrix 2-norm of A.
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Singular Value Decomposition (SVD) MYERGENCIGEENENSY)
The Matrix Norms and the Singular Values
o Assume that A € CM*¥ has singular values (c.f. page 36)
o1>0y>-2>0.>0=0,41 =" =0, (79)
@ Then, the matrix 2-norm and the Frobenius norm of A satisfy [GVL2013, pp. 77]:

[Ally = o1, (80)

|Allp = \Jo? +03+-- +02 (81)
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SINEOETAVETTER DTNV Matrix Norms and SVD

The Interpretation of Matrix Norms

@ The matrix A is mapped to a vector o
A T
g = [01 0y ... Op Opy1 ... O'q] .

@ Then, the matrix 2-norm and the Frobenius norm of A satisfy

[All, = ol .
SN~~~ SN~
matrix 2-norm vector co-norm
Al = ol
S~ S~~~

Frobenius norm vector 2-norm

C.-L. Liu (NTU) STEM: Matrix Decompositions
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SINEOETAVETTER DTNV Matrix Norms and SVD

The Rank of a Matrix

@ Based on the vector o, the rank of a matrix A satisfies

rank (A) = |o|, = card(supp(o)).

~——

Lo function

@ The rank of A is the number of non-zero singular values.

@ Low-rank optimization in signal processing

C.-L. Liu (NTU) STEM: Matrix Decompositions
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SINEOETAVETTER DTNV Matrix Norms and SVD

The Nuclear Norm

@ Based on the vector o, the nuclear norm of a matrix A is defined as

q
[AlL="loll, =) o
~—— P

vector 1-norm

@ The nuclear norm is viewed as a convex surrogate of the rank function.
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Outline

Motivations

Jordan Canonical Form
Definition and Examples
The Integer Power of a Matrix

Singular Value Decomposition (SVD)
Definition and Properties

Matrix Norms and SVD

@ Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)

The Data Vectors

o Consider a set of data vectors (row vectors)

Xm = [xm,l Tm2 Tm3 .- xm,N} ) (87)

form=1,2,... M.
@ The number of data vectors: M
@ The length of a data vector: NV
o Usually M > N.
o Applications

o Audio signals

o Images

o Communication signals

o Array signal processing (linear arrays or planar arrays)
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Principal Component Analysis (PCA)

Mean Subtraction

@ The mean vector X (as a row vector) is

o The new data vector a,, after subtracting the mean vector from x,,

A _
a, = X, — X.
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Principal Component Analysis (PCA)

The Data Matrix

o The data matrix A € CM*N

ap Xl—f
Aé ag B Xg—i
apnr Xy — X

@ The data vector x,,, can be expressed as

Xp =€ A +X,

1 ifi=m,
[em]i:{o i€
if © # m.

where e,, € CM satisfies
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Principal Component Analysis (PCA)

SVD of A
@ According to Page 37, the SVD of A is

A =TUxVvH

N
= E O'iuiV!-_'
i=1

H H H H
= 01U1Vy + 02UWaVy + 03U3Vy + -+ OnUNV .

@ The singular values satisfy

op>0y>03>--->0yn>0.

@ The ith component of A is aiuivf'.
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Principal Component Analysis (PCA)

Dimensionality Reduction (1/2)

o We approximate the matrix A by . components:

L
~ A H
A= E o;u; Vv,
=1

H H H H
= o1u1vy + 0ougvy +03u3vy + -+ ouLvy.

@ Dimensional reduction: L < N.
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Principal Component Analysis (PCA)

Dimensionality Reduction (2/2)

o According to (91) and (97), we define the approximated data vectors

L
Xp L el A4x= (Z gi (eILui)V?> +X. (99)

=1

° eLui is the mth entry of u,.

o 0, (e}, u;) is the combination coefficient.

m

o Theset {vi' vl ... V!l contains the axes.
@ A general form of the approximated data vectors is

(Z civ;*> + X, (100)

where ¢; € Cfori=1,2,... L.
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An Example of the PCA (1/4)

Problem

Use the PCA with L = 1 to find a regression line that approximates the points in R?
x;1=[7 8], x=1[9 8], x3=[10 10], x,=[11 12], x5=[13 12].

We assume that the combination coefficients are real numbers.

@ (Solution) The number of data M = 5.
@ The length of the data vector N = 2.

@ The mean vector

x=[10 10].
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Principal Component Analysis (PCA)

An Example of the PCA (2/4)

@ The new data vectors
a; = [—3 —2], g = [—1 —2], as = [O 0], g = [1 2}, as = [3 2:|

@ The data matrix A and its SVD

-3 -2
—1 =2

A=|0 0]. (101)
12
32
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Principal Component Analysis (PCA)

An Example of the PCA (3/4)

@ The SVD of A = UXVH where

—0.6116 0.3549 0  0.0393 0.7060 58416 0
—0.3549 —0.6116 0  0.7060 —0.0393 0  1.3695
U= 0 0 10000 O 0 ., 2= 0 0 |,
0.3549 0.6116 0  0.7060 —0.0393 0 0
06116 —0.3549 0  0.0393 0.7060 0 0

vV — [0.7497 —0.6618} .

0.6618  0.7497
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Principal Component Analysis (PCA)

An Example of the PCA (4/4)
e For L =1 in (97), we obtain

~0.6116
~ ~0.3549

A = (5.8416) 0 [0.7497 —0.6618] .
T | 03549 | T M g

H
1

g1 v

0.6116
—_——

ui

@ According to (100) and page 61, an approximation of the data points is

(10 10] 4+ ¢[0.7497 —0.6618] ,

where ¢ € R.

C.-L. Liu (NTU) STEM: Matrix Decompositions May 28, 2024

64



	Motivations
	Jordan Canonical Form
	Definition and Examples
	The Integer Power of a Matrix

	Singular Value Decomposition (SVD)
	Definition and Properties
	Matrix Norms and SVD

	Principal Component Analysis (PCA)

