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Motivations

The Eigen-Decomposition of Square Matrices
Let A ∈ CN×N .
There exist N eigenvalues λ1, λ2, . . . , λN−1, λN .
The eigenvectors v1,v2, . . . ,vN−1,vN are assumed to be linearly independent.
The eigen-equations are Avn = λnvn for n = 1, 2, . . . , N .
Then A can be decomposed into

A = VDV−1, (1)
V =

[
v1 v2 . . . vN−1 vN

]
, D = diag (λ1, λ2, . . . , λN−1, λN) . (2)

Motivating Questions
1 What if N linearly independent eigenvectors do not exist? Jordan canonical forms.
2 What if the matrix A ∈ CM×N is non-square? Singular value decomposition.
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Jordan Canonical Form Definition and Examples
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Jordan Canonical Form Definition and Examples

Example: Eigen-Decomposition of a Matrix (1/3)
Find the eigen-decomposition of a matrix A, which is

A =

2 1 6
0 2 5
0 0 2

 . (3)

First, we consider the characteristic equation det (A− λI) = 0.
For the matrix A in (3), the characteristic equation becomes

det

2− λ 1 6
0 2− λ 5
0 0 2− λ

 = (2− λ)3 = 0. (4)

Therefore, the eigenvalues of A are 2, 2, 2.
The eigenvalue 2 has an algebraic multiplicity of 3.
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Jordan Canonical Form Definition and Examples

Example: Eigen-Decomposition of a Matrix (2/3)
We assume that an eigenvector corresponding to the eigenvalue λ = 2 is
v1 =

[
α1 β1 γ1

]T.
The characteristic equation (A− λI)v1 = 0 becomes0 1 6

0 0 5
0 0 0

α1

β1

γ1

 =

00
0

 . (5)

Equation (5) leads to β1 = γ1 = 0.
For simplicity, we set α1 = 1.
The eigenvector v1 becomes

v1 =

10
0

 . (6)
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Jordan Canonical Form Definition and Examples

Example: Eigen-Decomposition of a Matrix (3/3)
For simplicity, we set α1 = 1 in (6).
There is only one independent solution to the eigenvector of A.
The eigenvalue 2 has a geometric multiplicity of 1.
Also, there is only one eigen-equation for A:

Av1 = (2)v1. (7)

Question
Can we still decompose A into VJV−1?
The matrix V contains the (generalized) eigenvectors of A.
The matrix J contains the eigenvalues of A.
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Jordan Canonical Form Definition and Examples

Example: Generalized Eigenvectors (1/3)
Continued from the examples from pages 7 to 9
We define a generalized eigenvector v2 ∈ C3 satisfying

(A− λI)v2 = v1. (8)0 1 6
0 0 5
0 0 0

v2 =

10
0

 . (9)

(Exercise) It can be shown that

v2 =

01
0

 , (10)

is a solution to (8).
In addition, v1 and v2 are linearly independent.
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Jordan Canonical Form Definition and Examples

Example: Generalized Eigenvectors (2/3)
We define another generalized eigenvector v3 ∈ C3 satisfying

(A− λI)v3 = v2. (11)0 1 6
0 0 5
0 0 0

v3 =

01
0

. (12)

We select

v3 =

 0
−6

5
1
5

 , (13)

such that (11) is satisfied and v1, v2, and v3 are linearly independent.
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Jordan Canonical Form Definition and Examples

Example: Generalized Eigenvectors (3/3)
Equations (7), (8), and (11) can be rewritten as

Av1 = λv1, Av2 = λv2 + v1, Av3 = λv3 + v2, (14)

We obtain

A
[
v1 v2 v3

]︸ ︷︷ ︸
V

=
[
v1 v2 v3

]︸ ︷︷ ︸
V

λ 1 0
0 λ 1
0 0 λ


︸ ︷︷ ︸

J

. (15)

Since v1, v2, and v3 are linearly independent, the matrix V is invertible. We have

A = VJV−1. (16)

J is the Jordan canonical form of A.
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Jordan Canonical Form Definition and Examples

The Jordan Canonical Form
We decompose the matrix A ∈ CN×N into VJV−1.
The matrix V contains the (generalized) eigenvectors.
The Jordan canonical form J of A is a block diagonal matrix of the form

J = blkdiag (J 1,J 2, . . . ,J K) . (17)
For every k ∈ [K], the Jordan block J k has the form of

J k = λkILk
+ULk

, (18)
for some Lk ∈ [N ].
The matrix ILk

denotes the identity matrix of size Lk by Lk.
The matrix ULk

is an upper shift matrix of size Lk by Lk.
Let (i, j) ∈ [Lk]

2. The (i, j)th entry of ULk
is

[ULk
]i,j = δi+1,j. (19)
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Jordan Canonical Form Definition and Examples

Examples: The Jordan Blocks
If k = 1 and Lk = 1, then

J 1 = λ1I1 +U1 = λ1.

(J 1 becomes a scalar)
If k = 2 and Lk = 2, then

J 2 = λ2I2 +U2 =

[
λ2 1
0 λ2

]
.

If k = 3 and Lk = 3, then

J 3 = λ3I3 +U3 =

λ3 1 0
0 λ2 1
0 0 λ3

 .
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Jordan Canonical Form Definition and Examples

Example: The Jordan Canonical Form of a 4-by-4 Matrix (1/4)
We consider the matrix A

A =


4 0 0 −2
0 4 −2 0
−1 −1 4 0
−1 −1 0 4

 (20)

From the characteristic equation, the eigenvalues of A are λ = 2, 4, 4, 6.
For λ = 2, it can be shown that

[
1 1 1 1

]T is an eigenvector.
For λ = 6, it can be shown that

[
1 1 −1 −1

]T is an eigenvector.
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Jordan Canonical Form Definition and Examples

Example: The Jordan Canonical Form of a 4-by-4 Matrix (2/4)
For λ = 4, the eigenvector is assumed to be v1 =

[
α1 β1 γ1 δ1

]T.
The equation (A− λI)v1 = 0 becomes

0 0 0 −2
0 0 −2 0
−1 −1 0 0
−1 −1 0 0



α1

β1

γ1
δ1

 =


0
0
0
0

 . (21)

For λ = 4, there is only one linearly independent eigenvector:

v1 =


1
−1
0
0

 . (22)
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Jordan Canonical Form Definition and Examples

Example: The Jordan Canonical Form of a 4-by-4 Matrix (3/4)
As a result, we need to find the generalized eigenvector v2 =

[
α2 β2 γ2 δ2

]T.
The equation (A− λI)v2 = v1 can be expressed as

0 0 0 −2
0 0 −2 0
−1 −1 0 0
−1 −1 0 0



α2

β2

γ2
δ2

 =


1
−1
0
0

 . (23)

For λ = 4, the generalized eigenvector v2 is

v1 =


0
0
1/2
−1/2

 . (24)
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Jordan Canonical Form Definition and Examples

Example: The Jordan Canonical Form of a 4-by-4 Matrix (4/4)
Based on the discussions on pages 15, 16, and 17, we obtain

A = VJV−1, (25)

where

V =


1 1 0 1
1 −1 0 1
1 0 1/2 −1
1 0 −1/2 −1

 , J =


2 0 0 0
0 4 1 0
0 0 4 0
0 0 0 6

 . (26)
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Jordan Canonical Form Definition and Examples

Example: The Jordan Canonical Form of a 5-by-5 Matrix (1/5)
As an example, let the matrix A be

A =


4 0 1 2 1
0 4 1 −2 1
0 0 3 0 1
0 0 0 4 0
0 0 1 0 3

 . (27)

Solving the characteristic equation of A leads to the eigenvalues

λ = 2, 4, 4, 4, 4. (28)

For λ = 2, it can be shown that
[
0 0 1 0 −1

]T is an eigenvector.
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Jordan Canonical Form Definition and Examples

Example: The Jordan Canonical Form of a 5-by-5 Matrix (2/5)
For λ = 4, the eigenvector is assumed to be v =

[
v1 v2 v3 v4 v5

]T.
From the equation (A− λI)v = 0, we obtain

0 0 1 2 1
0 0 1 −2 1
0 0 −1 0 1
0 0 0 0 0
0 0 1 0 −1



v1
v2
v3
v4
v5

 =


0
0
0
0
0

 . (29)

For λ = 4, there are only two linearly independent solutions, denoted by ϕ1 and ψ1:

ϕ1 =
[
1 0 0 0 0

]T
, ψ1 =

[
0 1 0 0 0

]T
. (30)
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Jordan Canonical Form Definition and Examples

Example: The Jordan Canonical Form of a 5-by-5 Matrix (3/5)
For λ = 4 and the eigenvector ϕ1 =

[
1 0 0 0 0

]T, we solve the equation
(A− λI)ϕ2 = ϕ1 for the generalized eigenvector.
We obtain 

0 0 1 2 1
0 0 1 −2 1
0 0 −1 0 1
0 0 0 0 0
0 0 1 0 −1

ϕ2 =


1
0
0
0
0

 . (31)

A solution to (31) is

ϕ2 =
[
0 0 1/4 1/4 1/4

]T
, (32)

where the first and the second entries of ϕ2 are set to zero for simplicity.
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Jordan Canonical Form Definition and Examples

Example: The Jordan Canonical Form of a 5-by-5 Matrix (4/5)
For λ = 4 and the eigenvector ψ1 =

[
0 1 0 0 0

]T, we solve the equation
(A− λI)ψ2 = ψ1 for the generalized eigenvector.
We obtain 

0 0 1 2 1
0 0 1 −2 1
0 0 −1 0 1
0 0 0 0 0
0 0 1 0 −1

ψ2 =


0
1
0
0
0

 . (33)

A solution to (33) is

ψ2 =
[
0 0 1/4 −1/4 1/4

]T
. (34)
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Jordan Canonical Form Definition and Examples

Example: The Jordan Canonical Form of a 5-by-5 Matrix (5/5)
Therefore, we can decompose the matrix A into

A = VJV−1, (35)

where

V =


1 0 0 0 0
0 0 1 0 0
0 1/4 0 1/4 1
0 1/4 0 −1/4 0
0 1/4 0 1/4 −1

 , J =


4 1 0 0 0
0 4 0 0 0
0 0 4 1 0
0 0 0 4 0
0 0 0 0 2

 . (36)
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Jordan Canonical Form The Integer Power of a Matrix
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Jordan Canonical Form The Integer Power of a Matrix

The Integer Power of a Matrix
We consider the Jordan canonical form of a matrix A ∈ CN×N ,

A = VJV−1. (37)

For a non-negative integer α, the matrix power Aα becomes

Aα =
(
VJV−1

) (
VJV−1

)
· · ·
(
VJV−1

)︸ ︷︷ ︸
α terms

(38)

= VJ
(
V−1V

)︸ ︷︷ ︸
I

J
(
V−1V

)︸ ︷︷ ︸
I

J · · ·JV−1 (39)

= VJ αV−1. (40)

(Question) How do you determine J α?
C.-L. Liu (NTU) STEM: Matrix Decompositions May 28, 2024 25



Jordan Canonical Form The Integer Power of a Matrix

The Power of J
From (17), we obtain

J α = blkdiag (J α
1 ,J α

2 , . . . ,J α
K) . (41)

After dropping the subscript Lk in (18) for simplicity, we rewrite the matrix J α
k as

J α
k = (λkI+U)α =

α∑
ℓ=0

(
α

ℓ

)
(λkI)

α−ℓ Uℓ (42)

=
α∑

ℓ=0

(
α

ℓ

)
λα−ℓ
k Uℓ. (43)

(Cross reference) The binomial expansion for scalars

(x+ y)N =
N∑

n=0

(
N

n

)
xN−nyn,

(
N

n

)
=

N !

(N − n)!n!
. (44)
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Jordan Canonical Form The Integer Power of a Matrix

Examples of the Powers of U

For instance, we assume that U =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

.

The powers of U are

U2 =


0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

 , U3 =


0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 U4 =


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

It can be shown that Uℓ = 0 for ℓ ≥ 5.
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Jordan Canonical Form The Integer Power of a Matrix

The General Form of Uℓ

If ℓ < Lk, then Uℓ
Lk

satisfies

[
Uℓ

Lk

]
m,n

= δn−m,ℓ =

{
1, if n−m = ℓ,

0, otherwise.
(45)

If ℓ ≥ Lk, then Uℓ
Lk

= 0.
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Jordan Canonical Form The Integer Power of a Matrix

The General Form of J α
k

Powers of a Jordan block
The kth eigenvalue is denoted by λk. Let α be a non-negative integer. Let J k be the
kth Jordan block. Then

[J α
k ]m,n =


λα
k , if m = n,(
α

n−m

)
λα−n+m
k , if n > m and α ≥ n−m,

0, otherwise.
(46)
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Jordan Canonical Form The Integer Power of a Matrix

An Example of J α
k

We assume that k = 1, Lk = 5, and α = 3

Then

J 3
1 =



λ3
1

(
α
1

)
λ2
1

(
α
2

)
λ1
1

(
α
3

)
λ0
1 0

0 λ3
1

(
α
1

)
λ2
1

(
α
2

)
λ1
1

(
α
3

)
λ0
1

0 0 λ3
1

(
α
1

)
λ2
1

(
α
2

)
λ1
1

0 0 0 λ3
1

(
α
1

)
λ2
1

0 0 0 0 λ3
1


.
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Jordan Canonical Form The Integer Power of a Matrix

Example: The Power of a 4-by-4 Matrix (1/2)
Find the matrix power A5, where

A =


4 0 0 −2
0 4 −2 0
−1 −1 4 0
−1 −1 0 4

 . (47)

According to the example on pages 15 to 18, the matrix power A5 becomes

A5 = VJ 5V−1 = Vblkdiag
(
J 5

1,J 5
2,J 5

3

)
V−1. (48)

The Jordan blocks are

J 1 = 2, J 2 =

[
4 1
0 4

]
, J 3 = 6, (49)
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Jordan Canonical Form The Integer Power of a Matrix

Example: The Power of a 4-by-4 Matrix (2/2)
The powers of the Jordan blocks can be expressed as

J 5
1 = 25 = 32, (50)

J 5
2 =

[
45

(
5
1

)
× 44

0 45

]
=

[
1024 1280
0 1024

]
, (51)

J 5
3 = 65 = 7776. (52)

Substituting (50), (50), and (50) into (48) yields

A5 =


2464 1440 −656 −3216
1440 2464 −3216 −656
−1936 −1936 2464 1440
−1936 −1936 1440 2464

 . (53)
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Singular Value Decomposition (SVD) Definition and Properties
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Singular Value Decomposition (SVD) Definition and Properties

The Eigen-Decomposition of Hermitian Matrices
Let A ∈ CN×N and AH = A (Hermitian matrices).
The eigenvalues λ1, λ2, . . . , λN are real numbers.
After normalization, the set of eigenvectors {v1,v2, . . . ,vN−1,vN} is complete
and orthonormal.
The eigen-decomposition of a Hermitian matrix A is

A = VDVH =
N∑

n=1

λnvnv
H
n . (54)

Motivating Questions
1 How do we extend the decomposition to M -by-N (non-square) matrices?
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Singular Value Decomposition (SVD) Definition and Properties

The Singular Value Decomposition [HJ2013, pp. 150], [GVL2013, pp. 76]

We assume that A ∈ CM×N , q = min{M,N}, and rank(A) = r.
There are unitary matrices U ∈ CM×M and V ∈ CN×N , and a square diagonal
matrix

Σq = diag (σ1, σ2, . . . , σq) . (55)
such that

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 = σr+1 = · · · = σq, (56)

A = UΣVH, Σ =



Σq ∈ RM×N if M = N ,[
Σq 0

]
∈ RM×N if M < N ,[

Σq

0

]
∈ RM×N if M > N ,

(57)
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Singular Value Decomposition (SVD) Definition and Properties

Terminologies
The scalars σ1, σ2, . . . , σq are the singular values of A.
The largest singular value of A is denoted by σmax(A) = σ1.
Let

U =
[
u1 u2 . . . uM

]
∈ CM×M . (58)

The column vectors u1,u2, . . . ,uM are the left singular vectors of A.
Let

V =
[
v1 v2 . . . vN

]
∈ CN×N . (59)

The column vectors v1,v2, . . . ,vN are the right singular vectors of A.
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Singular Value Decomposition (SVD) Definition and Properties

An Example of the SVD
It can be verified that

A =

 2 2
−1 1
−1 1

 =
[
u1 u2 u3

]︸ ︷︷ ︸
U

 σ1 0
0 σ2

0 0


︸ ︷︷ ︸

Σ

[
v1 v2

]H︸ ︷︷ ︸
VH

=

 1 0 0

0 −1/
√
2 1/

√
2

0 −1/
√
2 −1/

√
2

 √
8 0
0 2
0 0

[ 1/
√
2 1/

√
2

1/
√
2 −1/

√
2

]H
.

(Questions) How do we find the singular values and singular vectors for a matrix A?
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Singular Value Decomposition (SVD) Definition and Properties

SVD and Eigen-Decompositions (1/2)
Assume that A = UΣVH is the SVD of A ∈ CM×N .
The matrix AAH can be expressed as

AAH = UΣVH
(
UΣVH

)H
= U

(
ΣΣH

)
UH. (60)

Remarks on (60):
The left singular vectors u1,u2, . . . ,uM are the eigenvectors of AAH.
The matrix ΣΣH contains the eigenvalues of AAH.
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Singular Value Decomposition (SVD) Definition and Properties

SVD and Eigen-Decompositions (2/2)
Similarly, the matrix AHA can be expressed as

AHA =
(
UΣVH

)H
UΣVH

= V
(
ΣHΣ

)
VH. (61)

Remarks on (61):
The right singular vectors v1,v2, . . . ,vN are the eigenvectors of AHA.
The matrix ΣHΣ contains the eigenvalues of AAH.

How do we find both the left and right singular vectors?
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Singular Value Decomposition (SVD) Definition and Properties

Relations among U, Σ, and V (1/2)
A Property rephrased from [GVL2013, Corollary 2.4.2]
If A = UΣVH is the SVD of A ∈ CM×N and M ≥ N , then for i ∈ [N ], we have

Avi = σiui, AHui = σivi. (62)

Proof sketch (1/2): We rewrite the SVD as AV = UΣ, which is
A
[
v1 v2 . . . vN

]

=
[
u1 u2 . . . uN uN+1 . . . uM

]


σ1 0 . . . 0
0 σ2 . . . 0
... ... . . . ...
0 0 . . . σN

0 0 . . . 0

 .
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Singular Value Decomposition (SVD) Definition and Properties

Relations among U, Σ, and V (2/2)
Proof sketch (2/2): The SVD of AH can be expressed as

AH =

(
U

[
Σq

0

]
VH

)H

(63)

= V
[
ΣH

q 0H
]
UH. (64)

= V
[
Σq 0

]
UH. (65)

Comparing the columns of AHU = V
[
Σq 0

]
shows the second equation in (62).

Remarks on (65):
The matrices A and AH have the same singular values.
The left singular vectors of A become the right singular vectors of AH.
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Singular Value Decomposition (SVD) Definition and Properties

Computation of the Singular Vectors
If σi ̸= 0, then (62) can be rewritten as

ui =
Avi

σi

, (66)

vi =
AHui

σi

. (67)

Implications of (66) and (67)
If the matrix A, the non-zero singular values, and one set of singular vectors are
provided, we can uniquely determine another set of singular vectors.
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Singular Value Decomposition (SVD) Definition and Properties

An Example of the SVD (1/3)
Consider the matrix A on page 38. We obtain

A =

 2 2
−1 1
−1 1

 , AAH =

8 0 0
0 2 2
0 2 2

 .

The characteristic equation
det
(
AAH − λI

)
= − (λ− 8) (λ− 4)λ = 0.

The eigenvalues and eigenvectors are
λ1(AAH) = 8, λ2(AAH) = 4, λ3(AAH) = 0, (68)

u1 =

10
0

 , u2 =

 0

−1/
√
2

−1/
√
2

 , u3 =

 0

1/
√
2

−1/
√
2

 . (69)
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Singular Value Decomposition (SVD) Definition and Properties

An Example of the SVD (2/3)
From the definition of SVD on page 36, we obtain

Σ =

σ1 0
0 σ2

0 0

 . (70)

According to (60), the matrix ΣΣH contains the eigenvalues of AAH.

ΣΣH =

σ2
1 0 0
0 σ2

2 0
0 0 0

 =

8 0 0
0 4 0
0 0 0

 . (71)

Since σ1, σ2 ≥ 0, we obtain

σ1 =
√
8, σ2 = 2. (72)
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Singular Value Decomposition (SVD) Definition and Properties

An Example of the SVD (3/3)
Substituting (69) and (72) into (67) yields

v1 =
AHu1

σ1

=
1√
8

[
2 −1 −1
2 1 1

]10
0

 =

[
1/
√
2

1/
√
2

]
, (73)

v2 =
AHu2

σ2

=
1

2

[
2 −1 −1
2 1 1

] 0

−1/
√
2

−1/
√
2

 =

[
1/
√
2

−1/
√
2

]
. (74)
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Singular Value Decomposition (SVD) Matrix Norms and SVD

Outline
1 Motivations

2 Jordan Canonical Form
Definition and Examples
The Integer Power of a Matrix

3 Singular Value Decomposition (SVD)
Definition and Properties
Matrix Norms and SVD

4 Principal Component Analysis (PCA)
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Singular Value Decomposition (SVD) Matrix Norms and SVD

The Operator Norm [GVL2013, pp. 72]
The operator norm ∥A∥α,β is defined as

∥A∥α,β ≜ sup
x ̸=0

∥Ax∥β
∥x∥α

. (75)

∥·∥α,β is subordinate to the vector norms ∥·∥α and ∥·∥β.

C.-L. Liu (NTU) STEM: Matrix Decompositions May 28, 2024 48



Singular Value Decomposition (SVD) Matrix Norms and SVD

The Matrix p-Norm
By setting α = β = p, the matrix p-norm is defined as

∥A∥p ≜ sup
x ̸=0

∥Ax∥p
∥x∥p

. (76)

According to (76), it can be shown that [HJ2013, pp. 344-345], [GVL2013, pp. 72]:

∥A∥1 = max
1≤j≤N

M∑
i=1

∣∣∣[A]i,j

∣∣∣, (77)

∥A∥∞ = max
1≤i≤M

N∑
j=1

∣∣∣[A]i,j

∣∣∣. (78)

If p = 2, then ∥A∥2 is the matrix 2-norm of A.
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Singular Value Decomposition (SVD) Matrix Norms and SVD

The Matrix Norms and the Singular Values
Assume that A ∈ CM×N has singular values (c.f. page 36)

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 = σr+1 = · · · = σq. (79)

Then, the matrix 2-norm and the Frobenius norm of A satisfy [GVL2013, pp. 77]:

∥A∥2 = σ1, (80)

∥A∥F =
√

σ2
1 + σ2

2 + · · ·+ σ2
q . (81)
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Singular Value Decomposition (SVD) Matrix Norms and SVD

The Interpretation of Matrix Norms
The matrix A is mapped to a vector σ

σ ≜
[
σ1 σ2 . . . σr σr+1 . . . σq

]T
. (82)

Then, the matrix 2-norm and the Frobenius norm of A satisfy

∥A∥2︸ ︷︷ ︸
matrix 2-norm

= ∥σ∥∞︸ ︷︷ ︸
vector ∞-norm

, (83)

∥A∥F︸ ︷︷ ︸
Frobenius norm

= ∥σ∥2︸ ︷︷ ︸
vector 2-norm

. (84)

C.-L. Liu (NTU) STEM: Matrix Decompositions May 28, 2024 51



Singular Value Decomposition (SVD) Matrix Norms and SVD

The Rank of a Matrix
Based on the vector σ, the rank of a matrix A satisfies

rank (A) = ∥σ∥0︸ ︷︷ ︸
ℓ0 function

= card(supp(σ)). (85)

The rank of A is the number of non-zero singular values.
Low-rank optimization in signal processing
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Singular Value Decomposition (SVD) Matrix Norms and SVD

The Nuclear Norm
Based on the vector σ, the nuclear norm of a matrix A is defined as

∥A∥∗ = ∥σ∥1︸ ︷︷ ︸
vector 1-norm

=

q∑
i=1

σi. (86)

The nuclear norm is viewed as a convex surrogate of the rank function.
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Principal Component Analysis (PCA)

Outline
1 Motivations

2 Jordan Canonical Form
Definition and Examples
The Integer Power of a Matrix

3 Singular Value Decomposition (SVD)
Definition and Properties
Matrix Norms and SVD

4 Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)

The Data Vectors
Consider a set of data vectors (row vectors)

xm =
[
xm,1 xm,2 xm,3 . . . xm,N

]
, (87)

for m = 1, 2, . . .M .
The number of data vectors: M

The length of a data vector: N

Usually M ≫ N .
Applications

Audio signals
Images
Communication signals
Array signal processing (linear arrays or planar arrays)
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Principal Component Analysis (PCA)

Mean Subtraction
The mean vector x (as a row vector) is

x =
1

M

M∑
m=1

xm. (88)

The new data vector am after subtracting the mean vector from xm

am ≜ xm − x. (89)
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Principal Component Analysis (PCA)

The Data Matrix
The data matrix A ∈ CM×N

A ≜


a1

a2
...

aM

 =


x1 − x
x2 − x

...
xM − x

 . (90)

The data vector xm can be expressed as
xm = eTmA+ x, (91)

where em ∈ CM satisfies

[em]i =

{
1 if i = m,
0 if i ̸= m.

(92)
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Principal Component Analysis (PCA)

SVD of A
According to Page 37, the SVD of A is

A = UΣVH (93)

=
N∑
i=1

σiuiv
H
i (94)

= σ1u1v
H
1 + σ2u2v

H
2 + σ3u3v

H
3 + · · ·+ σNuNv

H
N . (95)

The singular values satisfy

σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ σN ≥ 0. (96)

The ith component of A is σiuiv
H
i .
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Principal Component Analysis (PCA)

Dimensionality Reduction (1/2)
We approximate the matrix A by L components:

Â ≜
L∑
i=1

σiuiv
H
i (97)

= σ1u1v
H
1 + σ2u2v

H
2 + σ3u3v

H
3 + · · ·+ σLuLv

H
L. (98)

Dimensional reduction: L ≤ N .
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Principal Component Analysis (PCA)

Dimensionality Reduction (2/2)
According to (91) and (97), we define the approximated data vectors

x̂m ≜ eTmÂ+ x =

(
L∑
i=1

σi

(
eTmui

)
vH
i

)
+ x. (99)

eTmui is the mth entry of ui.
σi
(
eTmui

)
is the combination coefficient.

The set {vH
1 ,v

H
2 , . . . ,v

H
L} contains the axes.

A general form of the approximated data vectors is(
L∑
i=1

civ
H
i

)
+ x, (100)

where ci ∈ C for i = 1, 2, . . . L.
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Principal Component Analysis (PCA)

An Example of the PCA (1/4)
Problem
Use the PCA with L = 1 to find a regression line that approximates the points in R2

x1 =
[
7 8

]
, x2 =

[
9 8

]
, x3 =

[
10 10

]
, x4 =

[
11 12

]
, x5 =

[
13 12

]
.

We assume that the combination coefficients are real numbers.

(Solution) The number of data M = 5.
The length of the data vector N = 2.
The mean vector

x =
[
10 10

]
.
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Principal Component Analysis (PCA)

An Example of the PCA (2/4)
The new data vectors

a1 =
[
−3 −2

]
, a2 =

[
−1 −2

]
, a3 =

[
0 0

]
, a4 =

[
1 2

]
, a5 =

[
3 2

]
.

The data matrix A and its SVD

A =


−3 −2
−1 −2
0 0
1 2
3 2

 . (101)
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Principal Component Analysis (PCA)

An Example of the PCA (3/4)
The SVD of A = UΣVH, where

U =


−0.6116 0.3549 0 0.0393 0.7060
−0.3549 −0.6116 0 0.7060 −0.0393

0 0 1.0000 0 0
0.3549 0.6116 0 0.7060 −0.0393
0.6116 −0.3549 0 0.0393 0.7060

 , Σ =


5.8416 0

0 1.3695
0 0
0 0
0 0

 ,

V =

[
0.7497 −0.6618
0.6618 0.7497

]
.
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Principal Component Analysis (PCA)

An Example of the PCA (4/4)
For L = 1 in (97), we obtain

Â = (5.8416)︸ ︷︷ ︸
σ1


−0.6116
−0.3549

0
0.3549
0.6116


︸ ︷︷ ︸

u1

[
0.7497 −0.6618

]︸ ︷︷ ︸
vH
1

.

According to (100) and page 61, an approximation of the data points is[
10 10

]
+ c
[
0.7497 −0.6618

]
,

where c ∈ R.
C.-L. Liu (NTU) STEM: Matrix Decompositions May 28, 2024 64


	Motivations
	Jordan Canonical Form
	Definition and Examples
	The Integer Power of a Matrix

	Singular Value Decomposition (SVD)
	Definition and Properties
	Matrix Norms and SVD

	Principal Component Analysis (PCA)

