Selected Topics in Engineering Mathematics： Least Squares Problems

Chun－Lin Liu（劉俊麟）
Department of Electrical Engineering
Graduate Institute of Communication Engineering
National Taiwan University

May 28， 2024

Reference

(1) R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed., New York: Cambridge University Press, 2013. [HJ2013]
(2) G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., Baltimore: The Johns Hopkins University Press, 2013.
[GVL2013]

- J.-J. Ding. (2023). Selected Topics in Engineering Mathematics [PowerPoint slides].

Outline

(1) Problem Formulation

2 The Full-Rank LS Problem

(3) The Rank-Deficient LS Problem
4. The Pseudo-Inverse of a Matrix
(5) Concluding Remarks

Motivation

- Find a vector $\mathrm{x} \in \mathbb{C}^{N}$ such that

$$
\begin{equation*}
\mathrm{Ax}=\mathrm{b} \tag{1}
\end{equation*}
$$

- The data matrix $\mathbf{A} \in \mathbb{C}^{M \times N}$ is given.
- The observation vector $\mathbf{b} \in \mathbb{C}^{M}$ is given.
- The number of equations is M.
- The number of unknowns is N.
- Underdetermined systems: $M<N$
- Overdetermined systems: $M>N$

Questions

- How many solutions to (1)?

Examples of (1)

Underdetermined Systems

$$
\underbrace{\left[\begin{array}{ll}
1 & 2
\end{array}\right]}_{\mathbf{A}} \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]}_{\mathbf{x}}=\underbrace{[0]}_{\mathbf{b}} .
$$

(2)

The solutions to (2) are

$$
\mathbf{x}=\left[\begin{array}{c}
-2 c \\
c
\end{array}\right]
$$

where $c \in \mathbb{C}$.

Overdetermined Systems

$$
\underbrace{\left[\begin{array}{l}
1 \tag{3}\\
3
\end{array}\right]}_{\mathbf{A}} \underbrace{\left[x_{1}\right]}_{\mathbf{x}}=\underbrace{\left[\begin{array}{l}
3 \\
2
\end{array}\right]}_{\mathbf{b}} .
$$

There are no solutions to (3).

Usually, an overdetermine system has no exact solution.

The Least Squares Problem (1/2)

- We aim to find a solution such that

$$
\begin{equation*}
\mathbf{A} \mathbf{x} \approx \mathbf{b} \tag{4}
\end{equation*}
$$

- The vector p-norm measures the proximity of $\mathbf{A x}$ to \mathbf{b}.

$$
\begin{equation*}
\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{p} \tag{5}
\end{equation*}
$$

where $p \in[1, \infty)$.

The Least Squares Problem (2/2)

The Least Squares (LS) Problem ($p=2$)

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathbb{C}^{N}}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2} \tag{6}
\end{equation*}
$$

- The LS problem (6) is tractable for two reasons
(1) The solutions to (6) can be found readily.
- Completion of squares
- The (complex) derivatives of the objective function
(2) The ℓ_{2} norm is invariant under unitary transformations. Namely,

$$
\begin{equation*}
\|\mathbf{U v}\|_{2}=\|\mathbf{v}\|_{2} \tag{7}
\end{equation*}
$$

for a unitary matrix \mathbf{U}.

Outline

(1) Problem Formulation
(2) The Full-Rank LS Problem
(3) The Rank-Deficient LS Problem
(4) The Pseudo-Inverse of a Matrix
(5) Concluding Remarks

The LS Solution(s)

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathbb{C}^{N}}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2} \tag{8}
\end{equation*}
$$

- Let x_{LS} be a solution to the LS problem (6).

Questions

- Does x_{LS} exist?
- How do we find x_{LS} ?
- Is the LS solution x_{LS} unique?

The Normal Equation

Normal Equation

If \mathbf{A} has full column rank, then there is a unique LS solution x_{LS}, and it satisfies

$$
\begin{equation*}
\mathbf{A}^{\mathrm{H}} \mathbf{A} \mathbf{x}_{\mathrm{LS}}=\mathbf{A}^{\mathrm{H}} \mathbf{b} \text {. } \tag{9}
\end{equation*}
$$

- See Section 5.3 .1 in [GVL2013] for the complete arguments
- The minimum residual $r_{L S}$

$$
\begin{equation*}
\mathbf{r}_{\mathrm{LS}} \triangleq \mathbf{b}-\mathbf{A} \mathbf{x}_{\mathrm{LS}} . \tag{10}
\end{equation*}
$$

- The size of $\mathbf{r}_{\text {LS }}$

$$
\begin{equation*}
\rho_{\mathrm{LS}} \triangleq\left\|\mathbf{A} \mathbf{x}_{\mathrm{LS}}-\mathbf{b}\right\|_{2} . \tag{11}
\end{equation*}
$$

Remarks on the Normal Equation

- Assume that $\mathbf{A} \in \mathbb{C}^{M \times N}$ and $M \geq N$.
- If A has full column rank, then
- $\operatorname{rank}(\mathbf{A})=N$.
- $\operatorname{rank}\left(\mathbf{A}^{\mathrm{H}} \mathbf{A}\right)=N$.
- $\mathbf{A}^{H} \mathbf{A}$ is invertible.
- If A has full column rank, then the LS solution can be uniquely found by

$$
\begin{equation*}
\mathbf{x}_{\mathrm{LS}} \triangleq\left(\mathbf{A}^{\mathrm{H}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{H}} \mathbf{b} . \tag{12}
\end{equation*}
$$

- Interpretations of x_{LS}
- Wiener-Hopf equation in Adaptive Signal Processing
- Singular values and singular vectors of \mathbf{A}

The LS Solution and the SVD (1/4)

- We assume that $\operatorname{rank}(\mathbf{A})=N$.
- The SVD of \mathbf{A} is denoted by

$$
\begin{equation*}
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{H}}=\sum_{i=1}^{N} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\mathrm{H}} \tag{13}
\end{equation*}
$$

- The matrix Σ is

$$
\boldsymbol{\Sigma}=\left[\begin{array}{c}
\boldsymbol{\Sigma}_{N} \tag{14}\\
\mathbf{0}_{(M-N) \times N}
\end{array}\right], \quad \quad \boldsymbol{\Sigma}_{N}=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{N}\right)
$$

- The singular values satisfy $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{N}>0$.
- The unitary matrices U and V comprise left and right singular vectors.

$$
\mathbf{U}=\left[\begin{array}{llll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \ldots & \mathbf{u}_{M}
\end{array}\right], \quad \mathbf{V}=\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \ldots & \mathbf{v}_{N} \tag{15}
\end{array}\right] .
$$

The LS Solution and the SVD (2/4)

- The unitary matrices U and V satisfy

$$
\mathbf{U}^{\mathrm{H}} \mathbf{U}=\mathbf{I}_{M}, \quad \mathbf{V}^{\mathrm{H}} \mathbf{V}=\mathbf{I}_{N},
$$

- Substituting (13) into (12) leads to

$$
\begin{align*}
\mathbf{x}_{\mathbf{L S}} & =\left(\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{H}\right)^{H}\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{H}\right)\right)^{-1}\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{H}\right)^{H} \mathbf{b} \tag{17}\\
& =\left(\mathbf{V} \boldsymbol{\Sigma}^{H} \mathbf{U}^{H} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{H}\right)^{-1} \mathbf{V} \boldsymbol{\Sigma}^{H} \mathbf{U}^{H} \mathbf{b} \tag{18}\\
& =\mathbf{V}\left(\boldsymbol{\Sigma}^{H} \boldsymbol{\Sigma}\right)^{-1} \mathbf{V}^{H} \mathbf{V} \boldsymbol{\Sigma}^{H} \mathbf{U}^{H} \mathbf{b} \tag{19}\\
& =\mathbf{V}\left(\boldsymbol{\Sigma}^{H} \boldsymbol{\Sigma}\right)^{-1} \boldsymbol{\Sigma}^{H} \mathbf{U}^{H} \mathbf{b} . \tag{20}
\end{align*}
$$

The LS Solution and the SVD (3/4)

- From (14), the matrix associated with Σ can be expressed as

$$
\begin{array}{rl}
\left(\boldsymbol{\Sigma}^{\mathrm{H}} \boldsymbol{\Sigma}\right)^{-1} \boldsymbol{\Sigma}^{\mathrm{H}} & =\left(\left[\begin{array}{c}
\boldsymbol{\Sigma}_{N} \\
\mathbf{0}_{(M-N) \times N}
\end{array}\right]^{\mathrm{H}}\left[\begin{array}{c}
\boldsymbol{\Sigma}_{N} \\
\mathbf{0}_{(M-N) \times N}
\end{array}\right]\right)^{-1}\left[\begin{array}{c}
\boldsymbol{\Sigma}_{N} \\
\mathbf{0}_{(M-N) \times N}
\end{array}\right]^{\mathrm{H}} \\
& =\left(\boldsymbol{\Sigma}_{N}^{\mathrm{H}} \boldsymbol{\Sigma}_{N}\right)^{-1}\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{N}^{\mathrm{H}} & \mathbf{0}_{N \times(M-N)}
\end{array}\right] \\
& =\left[\begin{array}{llllll}
\boldsymbol{\Sigma}_{N}^{-1} & \mathbf{0}_{N \times(M-N)}
\end{array}\right] \\
& =\left[\begin{array}{cccccc}
\sigma_{1}^{-1} & 0 & \ldots & 0 & 0 & \ldots \\
0 & \sigma_{2}^{-1} & \ldots & 0 & 0 & \ldots \\
0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots
\end{array}\right] \tag{24}\\
0 & 0
\end{array} \ldots
$$

The LS Solution and the SVD (4/4)

- Substituting (24) and (15) into (20) gives

$$
\begin{equation*}
\mathbf{x}_{\mathrm{LS}}=\sum_{i=1}^{N} \frac{\mathbf{u}_{i}^{\mathrm{H}} \mathbf{b}}{\sigma_{i}} \mathbf{v}_{i} . \tag{25}
\end{equation*}
$$

- \mathbf{x}_{LS} is a linear combination of $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{N}\right\}$.
- Two factors influence the combination coefficients
(1) The inner product $\left\langle\mathbf{b}, \mathbf{u}_{i}\right\rangle \triangleq \mathbf{u}_{i}^{\mathrm{H}} \mathbf{b}$
(2) The singular value σ_{i}

The Size of the Minimum Residual

- (Exercise) It can be shown that the size of the minimum residual (denoted by ρ_{LS}) satisfies

$$
\begin{equation*}
\rho_{\mathrm{LS}}^{2}=\sum_{i=N+1}^{M}\left|\mathbf{u}_{i}^{\mathrm{H}} \mathbf{b}\right|^{2} \tag{26}
\end{equation*}
$$

Outline

(1) Problem Formulation

2 The Full-Rank LS Problem
(3) The Rank-Deficient LS Problem
(4) The Pseudo-Inverse of a Matrix
(5) Concluding Remarks

Motivation

- (The normal equation of LS problems) If \mathbf{A} has full column rank, then there is an unique LS solution x_{LS} and

$$
\begin{equation*}
\mathbf{A}^{H} \mathbf{A x}_{\mathrm{LS}}=\mathbf{A}^{\mathrm{H}} \mathbf{b} \text {. } \tag{27}
\end{equation*}
$$

- What if \mathbf{A} is rank-deficient? Namely, $\mathbf{A} \in \mathbb{C}^{M \times N}$, and

$$
\begin{equation*}
\operatorname{rank}(\mathbf{A})=r<N . \tag{28}
\end{equation*}
$$

- Logical reasoning:

$$
\begin{equation*}
p \rightarrow q \quad \equiv \quad \sim q \rightarrow \sim p \tag{29}
\end{equation*}
$$

Example 1

- We consider the following equations

$$
\underbrace{\left[\begin{array}{ll}
1 & 2
\end{array}\right]}_{\mathbf{A}} \underbrace{\left[\begin{array}{l}
x_{1} \tag{30}\\
x_{2}
\end{array}\right]}_{\mathbf{x}}=\underbrace{[1]}_{\mathbf{b}}
$$

- The associated LS problem is cast as

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathbb{C}^{N}}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2} \tag{31}
\end{equation*}
$$

Observations

- There are infinitely many solutions to (30).
- If \mathbf{x}^{\star} is a solution to (30), then $\left\|\mathbf{A} \mathbf{x}^{\star}-\mathbf{b}\right\|_{2}=0$.
- The LS problem (31) has an infinite number of solutions.

The Minimum 2-Norm Solution

- We define the objective function

$$
\begin{equation*}
\psi(\mathbf{x}) \triangleq\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2} \tag{32}
\end{equation*}
$$

- The minimum of $\psi(\mathbf{x})$ is denoted by $\psi_{\text {min }}$.
- The set of all minimizers

$$
\begin{equation*}
\mathcal{X} \triangleq\left\{\mathbf{x} \in \mathbb{C}^{N} \mid \psi(\mathbf{x})=\psi_{\min }\right\} . \tag{33}
\end{equation*}
$$

- The set \mathcal{X} is convex [GVL2013, Section 5.5.1].
- Among the vectors in \mathcal{X}, we select the unique element with the minimum 2 -norm:

$$
\begin{equation*}
\mathbf{x}_{\mathrm{LS}} \triangleq \underset{\mathbf{x} \in \mathcal{X}}{\arg \min }\|\mathbf{x}\|_{2} \tag{34}
\end{equation*}
$$

The Rank-Deficient LS Solution with the Minimum 2-Norm

Theorem (Revised from Theorem 5.5.1 in [GVL2013])

Let the $S V D$ of \mathbf{A} be $\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{\mathrm{H}} \in \mathbb{C}^{M \times N}$ with $\operatorname{rank}(\mathbf{A})=r$. The singular vectors satisfy

$$
\mathbf{U} \triangleq\left[\begin{array}{llll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \ldots & \mathbf{u}_{M}
\end{array}\right], \quad \mathbf{V} \triangleq\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \ldots & \mathbf{v}_{N} \tag{35}
\end{array}\right]
$$

Assume that $\mathbf{b} \in \mathbb{C}^{M}$. Then

$$
\begin{equation*}
\mathbf{x}_{\mathrm{LS}}=\sum_{i=1}^{r} \frac{\mathbf{u}_{i}^{\mathrm{H}} \mathbf{b}}{\sigma_{i}} \mathbf{v}_{i} \tag{36}
\end{equation*}
$$

minimizes $\|\mathrm{Ax}-\mathrm{b}\|_{2}$ and has the smallest 2-norm of all minimizers.

The LS Solution in Example 1

- We consider the matrix $\mathbf{A}=\left[\begin{array}{ll}1 & 2\end{array}\right]$ in (30).
- The rank of \mathbf{A} is 1 .
- The SVD of A

$$
\mathbf{u}_{1}=1, \quad \sigma_{1}=\sqrt{5}, \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 / \sqrt{5} \tag{37}\\
2 / \sqrt{5}
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-2 / \sqrt{5} \\
1 / \sqrt{5}
\end{array}\right]
$$

- The set of minimizers

$$
\mathcal{X}=\left\{\left.\left[\begin{array}{l}
x_{1} \tag{38}\\
x_{2}
\end{array}\right] \in \mathbb{C}^{2} \right\rvert\, x_{1}+2 x_{2}=1\right\} .
$$

The LS Solution in Example 1

- The rank-deficient LS solution with the minimum 2-norm

$$
\begin{equation*}
\mathbf{x}_{\mathrm{LS}} \triangleq \underset{\mathbf{x} \in \mathcal{X}}{\arg \min }\|\mathbf{x}\|_{2}=\underset{\mathbf{x} \in \mathcal{X}}{\arg \min } \sqrt{\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}} \tag{39}
\end{equation*}
$$

- We decompose the elements x_{1} and x_{2} into the real and imaginary parts:

$$
\begin{align*}
& x_{1}=\operatorname{Re}\left\{x_{1}\right\}+\jmath \operatorname{Im}\left\{x_{1}\right\}, \tag{40}\\
& x_{2}=\operatorname{Re}\left\{x_{2}\right\}+\jmath \operatorname{Im}\left\{x_{2}\right\} . \tag{41}
\end{align*}
$$

- The LS solution x_{LS}

$$
\begin{gather*}
\mathbf{x}_{\mathrm{LS}} \triangleq \underset{\mathbf{x} \in \mathcal{X}}{\arg \min } \sqrt{\left(\operatorname{Re}\left\{x_{1}\right\}\right)^{2}+\left(\operatorname{Im}\left\{x_{1}\right\}\right)^{2}+\left(\operatorname{Re}\left\{x_{2}\right\}\right)^{2}+\left(\operatorname{Im}\left\{x_{2}\right\}\right)^{2}} \tag{42a}\\
\text { subject to } \quad \begin{aligned}
& \operatorname{Re}\left\{x_{1}\right\}+2 \operatorname{Re}\left\{x_{2}\right\}=1 \\
& \operatorname{Im}\left\{x_{1}\right\}+2 \operatorname{Im}\left\{x_{2}\right\}=0 .
\end{aligned} \tag{42b}
\end{gather*}
$$

Illustration of the LS Solution

$$
\begin{array}{rlrl}
\mathbf{A} & =\left[\begin{array}{ll}
1 & 2
\end{array}\right], & & \mathbf{b}=1 \\
\mathbf{u}_{1} & =1, & \sigma_{1}=\sqrt{5} \\
\mathbf{v}_{1}=\left[\begin{array}{l}
1 / \sqrt{5} \\
2 / \sqrt{5}
\end{array}\right], & \mathbf{v}_{2}=\left[\begin{array}{c}
-2 / \sqrt{5} \\
1 / \sqrt{5}
\end{array}\right] .
\end{array}
$$

Outline

(1) Problem Formulation
(2) The Full-Rank LS Problem
(3) The Rank-Deficient LS Problem
(4) The Pseudo-Inverse of a Matrix
(5) Concluding Remarks

Pseudo-inverse Using the SVD

- Let $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathbf{H}} \in \mathbb{C}^{M \times N}$ where $\operatorname{rank}(\mathbf{A})=r \leq \min \{M, N\}$ (c.f. page 21).
- We define a matrix $\boldsymbol{\Sigma}^{\dagger}$ (c.f. page 14)

$$
\boldsymbol{\Sigma}^{\dagger} \triangleq\left[\begin{array}{ccccccc}
\sigma_{1}^{-1} & 0 & \ldots & 0 & 0 & \ldots & 0 \tag{43}\\
0 & \sigma_{2}^{-1} & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \sigma_{r}^{-1} & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & 0 & \ldots & 0
\end{array}\right] \quad \in \mathbb{C}^{N \times M} .
$$

- The pseudo-inverse of \mathbf{A} is defined as

$$
\begin{equation*}
\mathbf{A}^{\dagger} \triangleq \mathbf{V} \Sigma^{\dagger} \mathbf{U}^{H} \quad \in \mathbb{C}^{N \times M} \tag{44}
\end{equation*}
$$

Example of the Pseudo-Inverse

- We consider the matrix $\mathbf{A}=\left[\begin{array}{ll}1 & 2\end{array}\right]$ in (30).
- The rank of \mathbf{A} is 1 .
- The SVD of A

$$
\mathbf{u}_{1}=1, \quad \sigma_{1}=\sqrt{5}, \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 / \sqrt{5} \tag{45}\\
2 / \sqrt{5}
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-2 / \sqrt{5} \\
1 / \sqrt{5}
\end{array}\right]
$$

- The pseudo-inverse of \mathbf{A}

$$
\mathbf{A}^{\dagger}=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]\left[\begin{array}{c}
\sigma_{1}^{-1} \tag{46}\\
0
\end{array}\right]\left[\mathbf{u}_{1}\right]^{H}=\left[\begin{array}{c}
1 / 5 \\
2 / 5
\end{array}\right] .
$$

Properties of the Pseudo-Inverse (1/5)

- Let $\mathbf{A} \in \mathbb{C}^{M \times N}$
- Let \mathbf{A}^{\dagger} be the pseudo-inverse of \mathbf{A}
- Let $\mathbf{b} \in \mathbb{C}^{M}$.
- The LS solution x_{LS} satisfies

$$
\begin{equation*}
\mathbf{x}_{\mathrm{LS}}=\mathbf{A}^{\dagger} \mathbf{b} \tag{47}
\end{equation*}
$$

- Remarks
- Comparison: (25) and (36).
- Initially, we aim to solve $\mathbf{A x}=\mathbf{b}$.

Properties of the Pseudo-Inverse $(2 / 5)$

- If $\operatorname{rank}(\mathbf{A})=N$, then

$$
\begin{equation*}
\mathbf{A}^{\dagger}=\left(\mathbf{A}^{\mathrm{H}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{H}} . \tag{48}
\end{equation*}
$$

- If $M=N=\operatorname{rank}(\mathbf{A})$, then

$$
\begin{align*}
\mathbf{A}^{\dagger} & =\left(\mathbf{A}^{H} \mathbf{A}\right)^{-1} \mathbf{A}^{H} \tag{49}\\
& =\mathbf{A}^{-1}\left(\mathbf{A}^{H}\right)^{-1} \mathbf{A}^{H} \tag{50}\\
& =\mathbf{A}^{-1} . \tag{51}
\end{align*}
$$

Properties of the Pseudo-Inverse (3/5)

- The pseudo-inverse \mathbf{A}^{\dagger} satisfies the four Moore-Penrose conditions:

$$
\begin{align*}
\mathbf{A} \mathbf{A}^{\dagger} \mathbf{A} & =\mathbf{A}, \tag{52}\\
\mathbf{A}^{\dagger} \mathbf{A} \mathbf{A}^{\dagger} & =\mathbf{A}^{\dagger}, \tag{53}\\
\left(\mathbf{A A}^{\dagger}\right)^{\mathrm{H}} & =\mathbf{A} \mathbf{A}^{\dagger}, \tag{54}\\
\left(\mathbf{A}^{\dagger} \mathbf{A}\right)^{\mathrm{H}} & =\mathbf{A}^{\dagger} \mathbf{A} . \tag{55}
\end{align*}
$$

- (Exercise) Prove the four Moore-Penrose conditions.

Properties of the Pseudo-Inverse (4/5)

- The matrix AA^{\dagger} can be expressed as

$$
\begin{equation*}
\mathbf{A} \mathbf{A}^{\dagger}=\sum_{i=1}^{r} \mathbf{u}_{i} \mathbf{u}_{i}^{\mathrm{H}} \tag{56}
\end{equation*}
$$

where $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}$ are the left singular vectors of \mathbf{A}.

- The matrix $\mathbf{A}^{\dagger} \mathbf{A}$ can be expressed as

$$
\begin{equation*}
\mathbf{A}^{\dagger} \mathbf{A}=\sum_{i=1}^{r} \mathbf{v}_{i} \mathbf{v}_{i}^{\mathrm{H}} \tag{57}
\end{equation*}
$$

where $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$ are the right singular vectors of \mathbf{A}.

Properties of the Pseudo-Inverse (5/5)

- The size of the minimum residual satisfies

$$
\begin{equation*}
\rho_{\mathrm{LS}}=\left\|\left(\mathbf{I}-\mathbf{A A}^{\dagger}\right) \mathbf{b}\right\|_{2} \tag{58}
\end{equation*}
$$

Outline

(1) Problem Formulation
(2) The Full-Rank LS Problem
(3) The Rank-Deficient LS Problem
(4) The Pseudo-Inverse of a Matrix
(5) Concluding Remarks

Concluding Remarks

- The LS problem

$$
\min _{\mathbf{x} \in \mathbb{C}^{N}}\|\mathbf{A x}-\mathbf{b}\|_{2}
$$

- Normal equations
- Full-rank LS
- Rank-deficient LS
- Pseudo inverse
- Extensions
- Weighted least squares (WLS)
- Total least squares (TLS)
- Constrained least squares (CLS)
- Recursive least squares (RLS)

