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Problem Formulation

Motivation
Find a vector x ∈ CN such that

Ax = b. (1)

The data matrix A ∈ CM×N is given.
The observation vector b ∈ CM is given.

The number of equations is M .
The number of unknowns is N .
Underdetermined systems: M < N

Overdetermined systems: M > N

Questions
How many solutions to (1)?
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Problem Formulation

Examples of (1)

Underdetermined Systems

[
1 2

]︸ ︷︷ ︸
A

[
x1
x2

]
︸︷︷︸

x

=
[
0
]︸︷︷︸

b

. (2)

The solutions to (2) are

x =

[
−2c
c

]
,

where c ∈ C.

Overdetermined Systems

[
1
3

]
︸︷︷︸
A

[
x1
]︸︷︷︸

x

=

[
3
2

]
︸︷︷︸

b

. (3)

There are no solutions to (3).

Usually, an overdetermine system has no
exact solution.
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Problem Formulation

The Least Squares Problem (1/2)
We aim to find a solution such that

Ax ≈ b. (4)

The vector p-norm measures the proximity of Ax to b.

∥Ax− b∥p , (5)

where p ∈ [1,∞).
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Problem Formulation

The Least Squares Problem (2/2)
The Least Squares (LS) Problem (p = 2)

min
x∈CN

∥Ax− b∥2 (6)

The LS problem (6) is tractable for two reasons
1 The solutions to (6) can be found readily.

Completion of squares
The (complex) derivatives of the objective function

2 The ℓ2 norm is invariant under unitary transformations. Namely,

∥Uv∥2 = ∥v∥2 , (7)

for a unitary matrix U.
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The Full-Rank LS Problem
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The Full-Rank LS Problem

The LS Solution(s)

min
x∈CN

∥Ax− b∥2 (8)

Let xLS be a solution to the LS problem (6).

Questions
Does xLS exist?
How do we find xLS?
Is the LS solution xLS unique?
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The Full-Rank LS Problem

The Normal Equation
Normal Equation
If A has full column rank, then there is a unique LS solution xLS, and it satisfies

AHAxLS = AHb. (9)

See Section 5.3.1 in [GVL2013] for the complete arguments
The minimum residual rLS

rLS ≜ b−AxLS. (10)

The size of rLS

ρLS ≜ ∥AxLS − b∥2 . (11)
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The Full-Rank LS Problem

Remarks on the Normal Equation
Assume that A ∈ CM×N and M ≥ N .
If A has full column rank, then

rank(A) = N .
rank(AHA) = N .
AHA is invertible.

If A has full column rank, then the LS solution can be uniquely found by

xLS ≜
(
AHA

)−1
AHb. (12)

Interpretations of xLS

Wiener-Hopf equation in Adaptive Signal Processing
Singular values and singular vectors of A
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The Full-Rank LS Problem

The LS Solution and the SVD (1/4)
We assume that rank(A) = N .
The SVD of A is denoted by

A = UΣVH =
N∑
i=1

σiuiv
H
i . (13)

The matrix Σ is

Σ =

[
ΣN

0(M−N)×N

]
, ΣN = diag (σ1, σ2, . . . , σN) . (14)

The singular values satisfy σ1 ≥ σ2 ≥ · · · ≥ σN > 0.
The unitary matrices U and V comprise left and right singular vectors.

U =
[
u1 u2 . . . uM

]
, V =

[
v1 v2 . . . vN

]
. (15)
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The Full-Rank LS Problem

The LS Solution and the SVD (2/4)
The unitary matrices U and V satisfy

UHU = IM , VHV = IN , (16)

Substituting (13) into (12) leads to

xLS =
((

UΣVH
)H (

UΣVH
))−1 (

UΣVH
)H

b (17)

=
(
VΣHUHUΣVH

)−1
VΣHUHb (18)

= V
(
ΣHΣ

)−1
VHVΣHUHb (19)

= V
(
ΣHΣ

)−1
ΣHUHb. (20)
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The Full-Rank LS Problem

The LS Solution and the SVD (3/4)
From (14), the matrix associated with Σ can be expressed as

(
ΣHΣ

)−1
ΣH =

([
ΣN

0(M−N)×N

]H [
ΣN

0(M−N)×N

])−1 [
ΣN

0(M−N)×N

]H
(21)

=
(
ΣH

NΣN

)−1 [
ΣH

N 0N×(M−N)

]
(22)

=
[
Σ−1

N 0N×(M−N)

]
(23)

=


σ−1
1 0 . . . 0 0 . . . 0
0 σ−1

2 . . . 0 0 . . . 0
... ... . . . ... ... . . . ...
0 0 . . . σ−1

N 0 . . . 0

 . (24)
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The Full-Rank LS Problem

The LS Solution and the SVD (4/4)
Substituting (24) and (15) into (20) gives

xLS =
N∑
i=1

uH
i b

σi
vi. (25)

xLS is a linear combination of {v1,v2, . . . ,vN}.
Two factors influence the combination coefficients

1 The inner product ⟨b,ui⟩ ≜ uH
i b

2 The singular value σi
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The Full-Rank LS Problem

The Size of the Minimum Residual
(Exercise) It can be shown that the size of the minimum residual (denoted by ρLS)
satisfies

ρ2LS =
M∑

i=N+1

∣∣uH
i b
∣∣2. (26)
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The Rank-Deficient LS Problem

Motivation
(The normal equation of LS problems) If A has full column rank, then there is an
unique LS solution xLS and

AHAxLS = AHb. (27)

What if A is rank-deficient? Namely, A ∈ CM×N , and

rank(A) = r < N. (28)

Logical reasoning:

p→ q ≡ ∼ q →∼ p (29)
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The Rank-Deficient LS Problem

Example 1
We consider the following equations[

1 2
]︸ ︷︷ ︸

A

[
x1
x2

]
︸︷︷︸

x

=
[
1
]︸︷︷︸

b

. (30)

The associated LS problem is cast as
min
x∈CN

∥Ax− b∥2 (31)

Observations
There are infinitely many solutions to (30).
If x⋆ is a solution to (30), then ∥Ax⋆ − b∥2 = 0.
The LS problem (31) has an infinite number of solutions.
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The Rank-Deficient LS Problem

The Minimum 2-Norm Solution
We define the objective function

ψ(x) ≜ ∥Ax− b∥2 . (32)

The minimum of ψ(x) is denoted by ψmin.
The set of all minimizers

X ≜ {x ∈ CN | ψ(x) = ψmin}. (33)

The set X is convex [GVL2013, Section 5.5.1].
Among the vectors in X , we select the unique element with the minimum 2-norm:

xLS ≜ argmin
x∈X

∥x∥2 (34)
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The Rank-Deficient LS Problem

The Rank-Deficient LS Solution with the Minimum 2-Norm
Theorem (Revised from Theorem 5.5.1 in [GVL2013])

Let the SVD of A be A = UΣVH ∈ CM×N with rank(A) = r. The singular vectors
satisfy

U ≜
[
u1 u2 . . . uM

]
, V ≜

[
v1 v2 . . . vN

]
. (35)

Assume that b ∈ CM . Then

xLS =
r∑

i=1

uH
i b

σi
vi (36)

minimizes ∥Ax− b∥2 and has the smallest 2-norm of all minimizers.
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The Rank-Deficient LS Problem

The LS Solution in Example 1
We consider the matrix A =

[
1 2

]
in (30).

The rank of A is 1.
The SVD of A

u1 = 1, σ1 =
√
5, v1 =

[
1/
√
5

2/
√
5

]
, v2 =

[
−2/

√
5

1/
√
5

]
. (37)

The set of minimizers

X =

{[
x1
x2

]
∈ C2

∣∣∣∣ x1 + 2x2 = 1

}
. (38)
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The Rank-Deficient LS Problem

The LS Solution in Example 1
The rank-deficient LS solution with the minimum 2-norm

xLS ≜ argmin
x∈X

∥x∥2 = argmin
x∈X

√
|x1|2 + |x2|2 (39)

We decompose the elements x1 and x2 into the real and imaginary parts:
x1 = Re{x1}+ ȷIm{x1}, (40)
x2 = Re{x2}+ ȷIm{x2}. (41)

The LS solution xLS

xLS ≜ argmin
x∈X

√
(Re {x1})2 + (Im {x1})2 + (Re {x2})2 + (Im {x2})2 (42a)

subject to Re{x1}+ 2Re{x2} = 1, (42b)
Im{x1}+ 2Im{x2} = 0. (42c)
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The Rank-Deficient LS Problem

Illustration of the LS Solution

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

A =
[
1 2

]
, b = 1,

u1 = 1, σ1 =
√
5,

v1 =

[
1/
√
5

2/
√
5

]
, v2 =

[
−2/

√
5

1/
√
5

]
.
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The Pseudo-Inverse of a Matrix

Pseudo-inverse Using the SVD
Let A = UΣVH ∈ CM×N where rank(A) = r ≤ min{M,N} (c.f. page 21).
We define a matrix Σ† (c.f. page 14)

Σ† ≜



σ−1
1 0 . . . 0 0 . . . 0
0 σ−1

2 . . . 0 0 . . . 0
... ... . . . ... ... . . . ...
0 0 . . . σ−1

r 0 . . . 0
0 0 . . . 0 0 . . . 0
... ... . . . ... ... . . . ...
0 0 . . . 0 0 . . . 0


∈ CN×M . (43)

The pseudo-inverse of A is defined as
A† ≜ VΣ†UH ∈ CN×M . (44)
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The Pseudo-Inverse of a Matrix

Example of the Pseudo-Inverse
We consider the matrix A =

[
1 2

]
in (30).

The rank of A is 1.
The SVD of A

u1 = 1, σ1 =
√
5, v1 =

[
1/
√
5

2/
√
5

]
, v2 =

[
−2/

√
5

1/
√
5

]
. (45)

The pseudo-inverse of A

A† =
[
v1 v2

] [σ−1
1

0

] [
u1

]H
=

[
1/5
2/5

]
. (46)
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The Pseudo-Inverse of a Matrix

Properties of the Pseudo-Inverse (1/5)
Let A ∈ CM×N

Let A† be the pseudo-inverse of A
Let b ∈ CM .
The LS solution xLS satisfies

xLS = A†b. (47)

Remarks
Comparison: (25) and (36).
Initially, we aim to solve Ax = b.
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The Pseudo-Inverse of a Matrix

Properties of the Pseudo-Inverse (2/5)
If rank(A) = N , then

A† =
(
AHA

)−1
AH. (48)

If M = N = rank(A), then

A† =
(
AHA

)−1
AH (49)

= A−1
(
AH
)−1

AH (50)
= A−1. (51)
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The Pseudo-Inverse of a Matrix

Properties of the Pseudo-Inverse (3/5)
The pseudo-inverse A† satisfies the four Moore-Penrose conditions:

AA†A = A, (52)

A†AA† = A†, (53)(
AA†)H = AA†, (54)(
A†A

)H
= A†A. (55)

(Exercise) Prove the four Moore-Penrose conditions.
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The Pseudo-Inverse of a Matrix

Properties of the Pseudo-Inverse (4/5)
The matrix AA† can be expressed as

AA† =
r∑

i=1

uiu
H
i , (56)

where u1,u2, . . . ,ur are the left singular vectors of A.
The matrix A†A can be expressed as

A†A =
r∑

i=1

viv
H
i , (57)

where v1,v2, . . . ,vr are the right singular vectors of A.
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The Pseudo-Inverse of a Matrix

Properties of the Pseudo-Inverse (5/5)
The size of the minimum residual satisfies

ρLS =
∥∥(I−AA†)b∥∥

2
. (58)
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Concluding Remarks

Concluding Remarks
The LS problem

min
x∈CN

∥Ax− b∥2

Normal equations
Full-rank LS
Rank-deficient LS
Pseudo inverse

Extensions
Weighted least squares (WLS)
Total least squares (TLS)
Constrained least squares (CLS)
Recursive least squares (RLS)

C.-L. Liu (NTU) STEM: Least Squares Problems May 28, 2024 34


	Problem Formulation
	The Full-Rank LS Problem
	The Rank-Deficient LS Problem
	The Pseudo-Inverse of a Matrix
	Concluding Remarks

