Benchmarking Code-switching Abilities of Speech Foundation Models

Presenter: R12921119 Chih-Kai Yang

Outline

- Code-switching
- Speech foundation models
- Benchmarking code-switching understanding
 - Task
 - Dataset construction
 - Evaluated models
 - Results and findings
- Takeaways

Code-Switching

• Alternates between two or more languages

Code-Switching

- Why code-switching speech processing **important**?
 - Common in our daily life
 - Natural way of communication for some countries, e.g. India, Singapore...

Code-Switching

- Why code-switching speech processing **challenging**?
 - Data scarcity: Rare high-quality labelled data for training
 - Hard to generalize: Typically relying on task-specific design
- May the **speech foundation models** help?

Speech Foundation Models

• Models that can solve many tasks with faithful speech representations

https://arxiv.org/abs/2404.09385

Speech Foundation Models

• There are many foundation models nowadays

https://arxiv.org/abs/2106.07447

https://arxiv.org/abs/2006.13979

Speech Foundation Models

• There are many foundation models nowadays

But how can we know their code-switching abilities?

https://arxiv.org/abs/2106.07447

https://arxiv.org/abs/2006.13979

Benchmarking Code-switching Abilities

- Most existing benchmarks need fine-tuning on downstream tasks
 - Cannot tell where the performances are derived. Pre-training, or fine-tuning?
- Can we have a benchmark without fine-tuning on downstream tasks?

Fine-tuning? Seen code-switching data?

Pre-training? Faithful Representations?

ZERO RESOURCE CODE-SWITCHED SPEECH BENCHMARK USING SPEECH UTTERANCE PAIRS FOR MULTIPLE SPOKEN LANGUAGES

ICASSP 2024

https://arxiv.org/abs/2310.03018

Task

- Objective: Assessing the semantic and syntactic understanding
- Given two code-switching utterances that are similar in content
 - One is "correct"
 - No semantic inconsistency, logical error, and grammatical errors.
 - The other one is "wrong"
 - Contains semantic inconsistency, logical error, and grammatical errors.
- The model should give higher score for the correct utterance
 - ^{EX:} 這不溶於water vs. 這不溶於fire

Task

- Objective: Assessing the semantic and syntactic understanding
- Given two code-switching utterances that are similar in content
 - One is "correct"
 - No semantic inconsistency, logical error, and grammatical errors.
 - The other one is "wrong"
 - Contains semantic inconsistency, logical error, and grammatical errors.
- The model should give higher score for the correct utterance

Need both multilingual and cross-lingual understanding

Task

- Objective: Assessing the semantic and syntactic understanding
- Given two code-switching utterances that are similar in content
 - One is "correct"
 - No semantic inconsistency, logical error, and grammatical errors.
 - The other one is "wrong"
 - Contains semantic inconsistency, logical error, and grammatical errors.
- The model should give higher score for the correct utterance

Need both multilingual and cross-lingual understanding

Dataset Construction

Step 1: Generate code-switch sentence from a monolingual sentence.

Prompt:

You are a code-switch sentence generator. Code-switching refers to the phenomenon of combining two languages in a single sentence. You will receive a sentence. You have to generate a code-switch sentence based on the given sentence. Quote the output in quotation marks.

Based on the sentence [input sentence], generate a code-switched sentence switching between two languages, Chinese and English. No other languages besides Chinese and English are allowed. Don't just repeat the original sentence in another language.

Output:

input sentence: "不溶于水。" (translation: Does not dissolve in water.) output sentence: "这是不溶于water的。" (translation: This does not dissolve in water.)

Step 2: Generate meaningless or erroneous code-switched sentence based on a given code-switch sentence.

Prompt:

Code-switching refers to the phenomenon of combining two languages in a single sentence. Given a code-switched sentence, randomly switch or replace at most three words so that the sentence becomes meaningless or erroneous but still remains as a code-switched sentence. [input sentence (correct)]

Output:

input sentence (correct): "这是不溶于water的。" (translation: This does not dissolve in water.) output sentence (wrong): "这是不溶于fire的。" (translation: This does not dissolve in fire.)

Verified by human annotators

- No existing dataset for this task
- Construct with LLM

TTS

• Language: zh/es/fr-en

Speech pairs

Training Pipeline

Evaluation

- Accuracy for the classification
- Classified with the score (no need for training classification head):

span-PP_{w,s}(**u**)
=
$$\prod_{i=1+j \cdot s} P(u_i \cdots u_{i+w} | u_1 \cdots u_{i-1} u_{i+w+1} \cdots u_T)$$

Can be viewed as the prob. of the utterance

 $\operatorname{span-PP}(\mathbf{u}=1,2,3,4,5,6) =$

Assessed Models

- Speech foundation models (all based on self-supervised learning, SSL)
 - HuBERT XL, base
 - mHuBERT
 - Wav2vec2.0 Large
 - XLSR-53, XLS-R 0.3B, XLS-R 1B
- Text-based language models (serving as toplines)
 - XLMR base
 - XGLM 1.7B

Speech encoder	# param. (B)	km: 100 cluster mono speech (hr)	Unit LM (RoBERTa) mono speech (hr)	dedup	es-en Acc ↑	fr-en Acc ↑	zh-en Acc ↑	avg Acc↑
		Multilingual Spe	eech Encoders					
XLSR-53 (53 lang) XLS-R 0.3B (128 lang) XLS-R 1B (128 lang) mHuBERT (es, fr, en)	$0.3 \\ 0.3 \\ 1 \\ 0.09$	es, fr, zh, en 25 each es, fr, zh, en 25 each es, fr, zh, en 25 each es, fr, en 33 each	es, fr, zh, en 100 each es, fr, zh, en 100 each es, fr, zh, en 100 each es, fr, en 133 each	V V V V	33.74 75.16 33.30 29.55	45.25 59.30 38.66 30.42	47.20 43.18 39.22 40.33	42.06 59.21 37.06 33.43
Monolingual Speech Encoders								
Wav2vec 2.0 LARGE (ll60k) HuBERT X-LARGE (ll60k) HuBERT Base (LS960)	$\begin{array}{c} 0.3\\1\\0.09\end{array}$	en 100 en 100 en 100	en 400 en 400 en 400	V V V	13.11 24.54 22.26	25.35 25.60 25.30	42.41 38.60 40.24	26.96 29.58 29.27
XLM-RoBERTa Base (text-base) XGLM 1.7B (text-base)	0.125 1.7		- -	-	54.62 90.91	55.12 88.38	55.16 92.03	54.97 90.44

Speech encoder	# param. (B)	km: 100 cluster mono speech (hr)	Unit LM (RoBERTa) mono speech (hr)	dedup	es-en Acc↑	fr-en Acc ↑	zh-en Acc ↑	avg Acc↑
		Multilingual Spe	eech Encoders					
XLSR-53 (53 lang)	$0.3 \\ 0.3 \\ 1 \\ 0.09$	es, fr, zh, en 25 each	es, fr, zh, en 100 each	V	33.74	45.25	47.20	42.06
XLS-R 0.3B (128 lang)		es, fr, zh, en 25 each	es, fr, zh, en 100 each	V	75.16	59.30	43.18	59.21
XLS-R 1B (128 lang)		es, fr, zh, en 25 each	es, fr, zh, en 100 each	V	33.30	38.66	39.22	37.06
mHuBERT (es, fr, en)		es, fr, en 33 each	es, fr, en 133 each	V	29.55	30.42	40.33	33.43
Monolingual Speech Encoders								
Wav2vec 2.0 LARGE (ll60k)	$\begin{array}{c} 0.3\\1\\0.09\end{array}$	en 100	en 400	V	13.11	25.35	42.41	26.96
HuBERT X-LARGE (ll60k)		en 100	en 400	V	24.54	25.60	38.60	29.58
HuBERT Base (LS960)		en 100	en 400	V	22.26	25.30	40.24	29.27
XLM-RoBERTa Base (text-base)	0.125	-	-	-	54.62	55.12	55.16	54.97
XGLM 1.7B (text-base)	1.7	-	-		90.91	88.38	92.03	90.44

Multilingual pre-training helps!

Speech encoder	# param. (B)	km: 100 cluster mono speech (hr)	Unit LM (RoBERTa) mono speech (hr)	dedup	es-en Acc ↑	fr-en Acc ↑	zh-en Acc ↑	avg Acc↑
		Multilingual Spe	eech Encoders					
XLSR-53 (53 lang)	$0.3 \\ 0.3 \\ 1 \\ 0.09$	es, fr, zh, en 25 each	es, fr, zh, en 100 each	V	33.74	45.25	47.20	42.06
XLS-R 0.3B (128 lang)		es, fr, zh, en 25 each	es, fr, zh, en 100 each	V	75.16	59.30	43.18	59.21
XLS-R 1B (128 lang)		es, fr, zh, en 25 each	es, fr, zh, en 100 each	V	33.30	38.66	39.22	37.06
mHuBERT (es, fr, en)		es, fr, en 33 each	es, fr, en 133 each	V	29.55	30.42	40.33	33.43
Monolingual Speech Encoders								
Wav2vec 2.0 LARGE (ll60k)	$\begin{array}{c} 0.3\\1\\0.09\end{array}$	en 100	en 400	V	13.11	25.35	42.41	26.96
HuBERT X-LARGE (ll60k)		en 100	en 400	V	24.54	25.60	38.60	29.58
HuBERT Base (LS960)		en 100	en 400	V	22.26	25.30	40.24	29.27
XLM-RoBERTa Base (text-base)	0.125	-	-	-	54.62	55.12	55.16	54.97
XGLM 1.7B (text-base)	1.7	-	-	-	90.91	88.38	92.03	90.44

Smaller models perform better

Speech encoder	# param. (B)	km: 100 cluster mono speech (hr)	Unit LM (RoBERTa) mono speech (hr)	dedup	es-en Acc ↑	fr-en Acc ↑	zh-en Acc ↑	avg Acc↑
		Multilingual Spe	eech Encoders					
XLSR-53 (53 lang)	$0.3 \\ 0.3 \\ 1 \\ 0.09$	es, fr, zh, en 25 each	es, fr, zh, en 100 each	V	33.74	45.25	47.20	42.06
XLS-R 0.3B (128 lang)		es, fr, zh, en 25 each	es, fr, zh, en 100 each	V	75.16	59.30	43.18	59.21
XLS-R 1B (128 lang)		es, fr, zh, en 25 each	es, fr, zh, en 100 each	V	33.30	38.66	39.22	37.06
mHuBERT (es, fr, en)		es, fr, en 33 each	es, fr, en 133 each	V	29.55	30.42	40.33	33.43
Monolingual Speech Encoders								
Wav2vec 2.0 LARGE (ll60k)	$\begin{array}{c} 0.3\\1\\0.09\end{array}$	en 100	en 400	V	13.11	25.35	42.41	26.96
HuBERT X-LARGE (ll60k)		en 100	en 400	V	24.54	25.60	38.60	29.58
HuBERT Base (LS960)		en 100	en 400	V	22.26	25.30	40.24	29.27
XLM-RoBERTa Base (text-base)	0.125	-	-	-	54.62	55.12	55.16	54.97
XGLM 1.7B (text-base)	1.7	-	-	-	90.91	88.38	92.03	90.44

More languages in pre-training helps

Speech encoder	# param. (B)	km: 100 cluster mono speech (hr)	Unit LM (RoBERTa) mono speech (hr)	dedup	es-en Acc↑	fr-en Acc ↑	zh-en Acc ↑	avg Acc↑
		Multilingual Spe	eech Encoders					
XLSR-53 (53 lang)	$0.3 \\ 0.3 \\ 1 \\ 0.09$	es, fr, zh, en 25 each	es, fr, zh, en 100 each	V	33.74	45.25	47.20	42.06
XLS-R 0.3B (128 lang)		es, fr, zh, en 25 each	es, fr, zh, en 100 each	V	75.16	59.30	43.18	59.21
XLS-R 1B (128 lang)		es, fr, zh, en 25 each	es, fr, zh, en 100 each	V	33.30	38.66	39.22	37.06
mHuBERT (es, fr, en)		es, fr, en 33 each	es, fr, en 133 each	V	29.55	30.42	40.33	33.43
		Monolingual Spe	eech Encoders					
Wav2vec 2.0 LARGE (ll60k)	$\begin{array}{c} 0.3\\1\\0.09\end{array}$	en 100	en 400	V	13.11	25.35	42.41	26.96
HuBERT X-LARGE (ll60k)		en 100	en 400	V	24.54	25.60	38.60	29.58
HuBERT Base (LS960)		en 100	en 400	V	22.26	25.30	40.24	29.27
XLM-RoBERTa Base (text-base)	0.125	-	-	-	54.62	55.12	55.16	54.97
XGLM 1.7B (text-base)	1.7	-	-		90.91	88.38	92.03	90.44

Huge gaps between text and speech models

Quick Summary

- Not showing good understanding for speech models
 - Huge gap between text-based models and speech foundation models
- Some points helpful for this task
 - Multilingual pre-training
 - Smaller model size
 - Wide coverage of pre-training languages

Besides SSL Models...

 Other multilingual models like Whisper, SeamlessM4T may not perform well on code-switching ASR

Index	Model	Prompting strategy	CSZS-correct MER(↓)
1	TCS	-	70.59
2	SeamlessM4T <i>medium</i>	-	71.12
3	SeamlessM41 large	-	69.52
4	SeamlessM4T v2	-	63.69
5	Whisper-large-v3	nonconcat	60.17

https://arxiv.org/abs/2401.00273

Takeaways

- Code-switching speech processing is challenging
- Current speech foundation models don't exhibit strong semantic and syntactic understanding

References

- Yang, Shu-wen et al. "A Large-Scale Evaluation of Speech Foundation Models"
- Hsu, Wei-Ning et al. "HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units"
- Conneau, Alexis et al. "Unsupervised Cross-lingual Representation Learning for Speech Recognition"
- Huang, Kuan-Po et al. "Zero Resource Code-switched Speech Benchmark Using Speech Utterance Pairs For Multiple Spoken Languages"
- Yang, Chih-Kai et al. "Investigating Zero-Shot Generalizability on Mandarin-English Code-Switched ASR and Speech-to-text Translation of Recent Foundation Models with Self-Supervision and Weak Supervision"

