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7. Discrete Vector Set Approximation

Section 7.1 Discrete Orthogonal Vector Set Expansion

Section 7.2 Non-Orthogonal Discrete Vector Set Expansion

Section 7.3 Generalized Inverse

Section 7.4 Discrete Orthogonal Polynomials (¥ &7 %)

Axzy
A and y are known.
Problem: How do we find x such that

Hy — AXH (L, norm of y—Ax )

1s minimized?
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—— Complete (Case 1) (Sec. 7-1-2)

—— Incomplete (Case 2) (Sec. 7-1-3)

— Orthogonal —  Discrete Orthogonal
Transforms (Secs. 6-7, 7.1.1)

—— Discrete Orthogonal
Polynomials (Sec. 7-4)

Discrete Vector
Set Expansion |

~ Complete (Case 3)

—Independent | (Secs. 7.2.1,7.2.2)
—Non-Orthogonal | get (Sec. 7-2)

__Incomplete (Case 4)
(Secs. 7.2.2,7.2.3)

—— Dependent Set (Case 5) (Sec. 7-3)
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7.1 Discrete Orthogonal Vector Set Expansion

7.1.1 Discrete Orthogonal Matrix

(ol Al Al A
[Orthogonal ¢ (2] ¢ (2] ¢3[2]§ Py 2]
(Column Form)] A=| ¢[3] © 4[3] = 4[3] - | 4[3]

0] A M) - 4[]

If then d 0 0 0

u 0 forn=k 0 d, 0 -0
orn

Z¢n[m]¢;[m]={ AA—|o 0 4 . o

m=l dn fOl"l’l:k : ‘ ‘ . .

_O O O --. dN_
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[Orthogonal (Column Form)]

Suppose that A 1s an MxN matrix. If all the columns of A are
orthogonal, then

A"A =D

where D 1s an NxN orthogonal matrix. Moreover, 1f all the columns of

A are orthonormal, then

d =1 )

where I 1s an NxN i1dentity matrix.

(Note: An orthonormal matrix is also called a unitary matrix. )



610

[Orthogonal | #[1] 4[2] 4[3] - 4[N]]

(Row Form)] Sl #l2] #[3] - 4[N]|
A=| ¢l ?, 2 ?, ¢, N]

Lo, [ 4.02] 4,131  ¢u[N])

N 0 form=#k

If nzll¢m [n]¢k [n] N {dm form=k
d, 0 0 0

0 d, 0 0

then AA"=10 0 d, 0
0 0 0 dy _
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[Orthogonal (Row Form)]

Suppose that A is an MxN matrix. If all the rows of A are orthogonal,
then

AAY =D

where D is an MxM orthogonal matrix. Moreover, if all the rows of A
are orthonormal, then

AA" =1
where I 1s an MxM i1dentity matrix.

(Note: If a set of vectors is orthogonal, then these vectors should be

linearly independent. Therefore, if the rows of A are orthogonal, then
M < N should be satisfied.)

———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

orthogonal (row form) # orthogonal (column form)
orthonormal (row form) = orthonormal (column form)

______________________________________________________________________________________________________________________
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[Inverse of an Orthogonal Matrix]

If A 1s a square matrix (1.e., M = N)
(1) If all the columns of A are orthogonal, AHA= D, then
A—l — D—IAH

(2) If all the columns of A are orthonormal, AHA= 1, then

AT =A"
(3) If all the rows of A are orthogonal, AAH= D, then
A7 =A"D"

(4) If all the rows of A are orthonormal, AAH=1, then

AT =A"
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[Example of Orthogonal Matrix]

e DFT 7
e Discrete Cosine Transform _ both  row-form  and

column-form orthogonal
e Walsh (Hadamard Transform)

e Haar Transform (I‘OW-fOI‘m orthogonal)

e Discrete Orthogonal Polynomial Matrices (row-form orthogonal)

|[Example 1]

1 1 1 1 (1/4 1/4 1/4 1/4
1 _ 1/4 1/4 -1/4 -1/4
w0 b TE A wi s awy -
Y1 21 =211 4 1/4 -1/4 -1/4 1/4
1 =1 1 =1 /4 -1/4 1/4 -1/4]
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[Duality Property of Orthogonal Matrices]

If all the columns of a square matrix A are orthonormal, then all the rows
of A are orthonormal, too.

(Proof): If
A"A =1

then since AH= A-! we have
AA" = AA T =1

Therefore, all the rows of A are orthonormal, too.



[Example 2] Note that,

if
11 1]
A=[1 =2 0
11 -1

615

then the columns of A are orthogonal. However, the rows of A are not

orthogonal.

If we perform normalization for the columns A and obtain B:

13 1N6 12

B=

1/\3  -2/6 |

B"’B=1, BB”"=I

0

/N3 16 —1/42

then both the columns and the rows of B are orthonormal:
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7.1.2 Discrete Orthogonal Vector Set Expansion of
the Complete Case (Case 1)

Suppose that b,[n], by[n], .... by[n] forms a complete and orthogonal
set in CV:
N . 0 form=k
2.0, [n]b;[n]= _
d_form=k

n=1

If we want to expand y[n] by a linear combination of b, [n] (m =1, 2,

..., N):




From the view point of the matrix 617

_bl[l] bz[l] b, 1] bN:l]_
If bl[z]i b2[2] bs 2] ibN 2]
A= 53] &[] B3] by[3]

BIN] BN AIN] - b

x=[x x x oox ] y=D M2 M3 - NI
then the problem can be re-expressed as
Ax =y
Since r 0 if m#n

A"A=D where D[m,n]:< N

we have

x=A"y=D"A"y, X =
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[Parseval’s Theorem for Discrete Orthogonal Matrix]

It

Ax =y

and the columns of A are orthogonal, then

é\y[n]\z > nZildn

(Proof):
v’y =x"A"Ax =x"Dx

N
x[n]f where d, = Z‘A[k,n]‘2
k=1

[Example 3]
Parseval’s theorem for the DFT and the Walsh transform:

> Jy[n] = NY el

Parseval’s theorem for the DCT

> Jy[n) = Xlelnl’
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7.1.3 Discrete Orthogonal Basis Expansion of the

Incomplete Case (Case 2)

Suppose that b,[n], b,[n], .... by[n] forms an incomplete and
orthogonal set in CV but M < N:

N 0 form=k

Solaleili-{, T

n=1

If we want to expand y[n] by a linear combination of b, [n] (m =1, 2,

ooy M):

~ i x, b, [n] The formulas are similar to

those of Case 1, except for

then v that y[n]= isreplaced by
Z)’ y[n] =~
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Note:

(1) Since b,[n], b,[n], . bM[ ] can be viewed as a subset of a complete
and orthogonal set {b[ 1, bylnl, ...., bylnl, byqlnl, ..., by [n]}, the
method to determine the linear combination coefficients x,, is all the
same as that of the complete case.
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Note:

N
(2) Determine x,, by x = Z y[nlb, [n]/ Zb | can minimize

n=l1 n=1

y[n]—ﬁ

y["]—ﬁT

N
(2 ]j - 3
=M +1 m=M +1
TR YA,

(from Parseval’s theorem on page 618) where d, = Z‘b ‘

$

y[n]—ﬁxmbm[nf

3l 2 g 2 2 L 2 2
DR WAAENE VA AN
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[Example 4] Suppose that
y=[11556 6 5 4 4 3 3]

Try to expand y as a linear combination of

b,

=M1 111111111

and b,=[-5 4 -3 2 -1 012 3 4 3]

such that |y —xb

, —X,b,| is minimized.

(Solution): It 1s obvious that b, and b, are orthogonal. Therefore,

11

11 o
2.h[n
n=l1

~ 43 6
y=-"b +55b

. 11
> y[n]b[n] > y[n]b;[n
e’ S = _12
T 11 110
n)b’ 2.0 [n]b;[n]
n=1
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| | | | !
1 2 3 4 5 6 7 8 9 10 11

Blue: ¥ Red: ﬁb +%b
‘y xby —x, 2‘2 HyH ‘xl‘ Hb1H ‘xz‘ZHbz“2:29°6
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7.2 Non-Orthogonal Discrete Basis Expansion

7.2.1 Method 1: Matrix Inverse

Suppose that{b,[n], b,[n], b;[n], .......... , by[n]} are linearly independent
and complete vector set in CV but are not orthogonal. (Case 3)

To express y[n] € CV by a linear combination ofb,[n], b,[n], b;[n],

olirl= Y, o]

we first construct a matrix A:

_bl[l: bz[l] b3[1]§ bN:l]
b1[2 b2[2] b3[2] sz]

A= b1[3 b2[3] b3[3] bN3]

BV BIN] BN - bV
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x=[x % x ox]  y=[0] 21 31 - VNI

[Dual Orthogonal]

{b,[n], by[n], bs[n], .......... , by[n]} are dual orthogonal to {¢,[n],
o,[nl, ¢snl, .......... , dy[n]} if:

0 ifm#k
u if m==~k

m

In fact, they are also dual orthonormal i1f u,, = 1.



A'A=1 626
If _bl[l]é bz[l] b3[1]§ bN[l]
bl2] b[2] ¢ b[2] - by[2]
A=|b[3] B[3] B[] - b[3]

comvestir, 1] g[2] a[3] - g[N]
A =gl el AL alN]
401 a2 43 - 4[N
then {b,[n], b,[n], bs[n], .........., by[n]} are dual orthonormal to {@,[n],
o [n], ¢slnl, oo, onnl}:
il o |0 fm#Ek
S, ladlnl-{] 777
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7.2.2 Method 2: Gram-Schmidt (Cases 3, 4)

Suppose that{b,[n], b,[n], ...... , by[n]} are linearly independent but not
orthogonal. Then we can follow the Gram-Schmidt process to convert it
into an orthogonal set {a,[n], a,[n], ...... , ay,[n]} and perform expansion.

(applicable for both complete and incomplete case)

 hln]
= )

S
I

a |n|= gm[n]
e ]
m = m+l1
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Find x,, x,, ..., x,, t0 minimize Hy —xb, —x,b, = — beMH

by the Gram-Schmidt method.

Step 1: Convert {b,[n], b,[n], ...... , by, [n]} into an orthogonal set
{a,[n], a,[n], ...... , a,[n]} by the Gram-Schmidt method.

=~ izmam [n]  z,= ZN:y[n]b; [n]  (from page 619)

k
= Z Ck,mbm [l’l]
m=1

Step 3: If

then

sz;ckm L n]= ZZchkm M :ix b, [n]

m=1 k=m m=I



[Example 1] Suppose that
y=[2 3 3 4 5 4 5]
Try to express y as x,b, + x,b, + x;b; where
b=[1 111 111]
b,=[1 2 3 45 6 7]

b,=[1 -1 1 -1 1 -1 1]
such that
ly —xb, —x,b, —x;b;| is minimized

using the Gram-Schmidt method.

629
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(Solution):

LR I N I R SR R

RN AN
g, =b, —aIsz[n]al[n] =b, —4/7a, =b, —4b,
n=1

-[-3 =2 -1 0 1 2 3]

2_g2_ 2

L3 2 -1 01 2 3

1
b, +—=b,=
AN AN A N A NG

7

7
=b,—a,Y b[nla[n]-a,> bnla,[n]=b,——a, —0a, =b, —%bl
n=1 \/7

n=1

:%[3 4 3 —4 3 —4 3]

83 _ 7g3_—1b+7b:13_43_43_43
AN TN PN 2@[ |
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Therefore

"&a n +£a n|+ I a, | n
y[n]:ﬁl[]2\/72[]2\/ﬁ3[]
y[”]:311191[”]"'5%[92[”]"'214[93[”]

[99 115 138 154 177 193 216}
42 42 42 42 42 42 42




y[n]= 22 a[n]

NG

26

)= o)+ a i)

13

Zﬁaz[n]
+ 1 a3[n]
221

n)= 2]+

(O]

(O]

0)

)

632
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7.2.3 Method 3: Least Square Approximation

Suppose that{b,[n], b,[n], ...... , b, [n]} are real and linearly independent
but not orthogonal and incomplete. If we want to find x,, such that

= Hy —xb; —x,b, _"'_beMH

1s minimized, we can also apply the least square approximation method.

i oty
552 i{ax ( [n]— Zxkb [n]ﬂ ( [n]—kixkbk["]j

m

N

. z—zbm[n](y[n] - Zxkbk[n]j
— —22 b [n]yln]+ ZZ X, me [n]b[n]
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Therefore, 1f we want

9 F*=0 form=1,2,... M

ox,

then . |

i M N N

> x5 b, [nlb[n]= b, [nly[n]  form=1,2,...M

k=l p=l e
Therefore,

Cx=1z x=C"z

where

x=[x, x, - x,] z{Zbl[n]y[n] > by[nlyln] - Zb [n]y[n }
> blnlbn] > blnlbyln] - Zbl[n]bM[n]

N

n=1




Also note that, if

then

nl1l b1 B[]
hl2] b[2] b[2]0 -
n[3 B[] B3]

S S

LS 5 g

1 T —
(\®)

e by —d

B[V] B[N] BIN] - BN,

C=A"'A

z=A"y where y=[y[l] y[2]

Therefore, from  x=C"'z, we have

y[M]]

635



[Example 2] Suppose that
y=[2 3 3 4 5 4 5]
Try to express y as x,b, + x,b, + x;b; where
b=[1 111 111]
b,=[1 2 3 4 5 6 7]

b,=[1 -1 1 -1 1 -1 1]
such that
ly —xb, —x,b, —x;b;| is minimized

using the least square approximation method.
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First, we construct the matrix

Since
7 28 1]
ATA=|28 140 4
14 7
[ 93
TAVIAT — 1 | _
(ATAY'AT = | 18
| 21

ATAY'=_1 48 12 o0

76 45
-12 -6
-28 21

therefore, from x=(A'A)'A'y

_1,b2
101
A=|1 4
16|
17

28 3
0 6
-28 21

637

28 21 |



-
3
"93 76 45 28 -3 20 -517/3| [311/168
ﬁ—lS 12 -6 0 6 12 18 || 4|=| 13/28
21 28 21 28 21 -28 21 ||5| | 1/24
4
_5_
)= gt 1]+ 5gba[n]+ 540 1]
[ 115 138 154 177 193 216}
42 4 42 42 42 R

(the same as Example 1)

638
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7.3 Generalized Inverse

Remember that, for the case where the vector sets are linearly
independent and complete, one can use the matrix inverse method
(pages 624, 625) to determine the linear combination coefficients:

If y = Ax
then x=A"y

However, when
(1) The vector sets are not linearly independent (i.e., det(A) = 0)
(2) The number of vector sets 1s smaller than the vector length
(i.e., A 1s not a square matrix)

A1 is hard to be determined.
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[Definition] Generalized Inverse

For an matrix A, if there is a matrix A* such that
AATA=A

then A" is called the generalized inverse of A.

We always use A™ to denote the generalized inverse of A.
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[Additional Definitions for Generalized Inverse]

(1) AA'A=A

(2) ATAAT =A"
(3) (AA*)" =AA’
@) (A"A) =A"A

If (1) 1s satisfied, then A" 1s called the generalized inverse of A.

If (1) and (2) are satisfied, then A" is called the reflexive generalized
inverse of A.

If (1), (2), (3), and (4) are all satisfied, then A" is called the pseudo

inverse of A. .
reflexive

pseudo inverse < generalized
iverse

generalized
inverse



size(A)=M x N

—M>N__|

det(A) # 0 (Case 1)

M =N — (columns are independent)

det(A) =0 (Case 3)
(columns are dependent)

columns are independent (Case 2)

— M<N—

columns are dependent (Case 4)

columns must be dependent (Case 4)

642
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[Case 1] If A is a square matrix and all the columns of A are linearly

independent, then

A+ — A—l
Note that, in this case,
AATA=AI=A

[Case 2] If A 1s an MxN matrix, N < M, and all the columns of A are
linearly independent, then

A+ — (ATA)—IAT
Note that, 1n this case,
AATA=AA"A)'ATA=A

Also note that it is the same as the least square approximation method
introduced in subsection 7-2-3
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[Case 3] Suppose that A is a square matrix and some columns of A

are dependent. Then, in this case
det(A)=0

and some of the eigenvalues of A are equal to zero.

[Case 3-1] Suppose that the eigenvector-eigenvalue decomposition of
A exists

A =EDE"
where D 1s a diagonal matrix where the diagonal entries are the

eigenvalues of A.
A if m=n

D[m,n]z{(; if m#n

Then, the generalized inverse of A is )
1/A if m=nand A #0

A" =ED'E"' where D'[mn]=< 0 ifm=nand A,=0
0 if m#n

\
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Note that, 1n this case,

AA"A =EDE'ED'E'EDE! =EDD'DE"'

If
S=DD'D
then
S[n.n]=AA4"'2, =4, if 1, £0
S|n,n]=1,04,=0 if 1.=0
S|m,n]=0 if m#n
Therefore,
S=DD'D=D

AA'A=EDE'=A



[Example 1] Suppose that

11 0
A=|1 2 1
01 1

Determine the generalized inverse of A.

(Solution): The eigenvalues of A1s A=0, 1, 3
The eigenvectors are
1 -1 17
1o -1]
12 1]
Therefore, the eigenvector-eigenvalue decomposition of A is

corresponding to A =0
corresponding to A =1
corresponding to A =3

1 1 170 0 o1 1
A=|-1 0 01 0|-1 0 2
1 -1 1][0 0 3][1 -1 1

-1

646
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Since
(1 1 1][0 0 O][1/3 -1/3 1/3]
A=|-1 0 20 1 0}/1/2 0 —1/2
1 -1 1[0 0 3]|1/6 2/6 1/6
we have

1 1 10fo 0o 0 7[1/3 -1/3 1/3°
At=|-1 0 2][0 1/1 0 |[1/72 0 -1/2
1 -1 1jlo o0 1/3][1/6 2/6 1/6_

(5/9 1/9 —4/9]
A*=1/9 2/9 1/9
|—4/9 1/9 5/9 |

One can show that
1 1

AATA=|1 2

0 1




[Case 3-2] 648
[Generalized Inverse when the Eigenvectors are not Complete]

D, 0 - 0
0 D, - 0
If A =EDE’! where D=| . S :
00 Dy _
) _ A 1 0 0]
A 0 0 0 4 1 0
D, =4,, | %k ’ > Or :
' 0 O A, 1
00 A 0 0 0 4]
then D, 0 0

A" =ED'E'  where D" =
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When 4, # 0
if D, = ,,then Dy =1/4,
A, 0 0] 1/4, 0 0
0 A 0 .| 0 1/4 0
(HIf D=} . . . |» then Dy =| . : T
%0 . . . . .
0 0 A | 0 0 1/ 4,
A 10 0 [ 4> A (D"
0 4 |1 0 0 A A7 . 5
(2)Ika: : . . ’DE: . . 27;3
0 0 2, 1 0 0 A A
0 0 0 4| 0 0 0 A

One can show that

(suppose that the size of D, 1s MxM)

DD =1




When 4, =0
if D.=4, then D=0,
A, 0 0
B)If D, = ? ﬂ;" ?
=0 |y o /1.,(

@I p =|:

° b

then

then

D, =

650
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Note that 1f
01 0 0] 0 0 0 O]
0 0 1 0 1 O 0 O
D, = : , D, =0 1 0 0
0 0 0 1
0 0 0 O 0 0 1 0]
(0 0 0 0]
01 0 0
then D;D ,=/0 0 1 0
0 0 0 1]
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[Case 4] Suppose that A is an MxN matrix, when

(1) M <N or
(11) N < M but some column vectors are not linearly independent,

the methods introduced in this chapter cannot be applied.

We can use the singular value decomposition (SVD) method
introduced 1n Section 8.1 to solve the generalized inverse problem in

Cases 1, 2, 3, and 4.



7.4 Discrete Orthogonal Polynomials

(% %7 %)

[Definition of Discrete Orthogonal Polynomials]

Suppose that there is a set of discrete functions as follows
P |n]= Zcm,k(n)k m=0,1,2
k=0

where (n), 1s called the falling factorial function:

(n), =1, (n), =n, (n), =n(n-1),

__________________________________________________________

then we call {Pj[n], P,[n], P,[n],
polynomial set within n € [n,, n,] with the weight w[x]

....... } a discrete orthogonal

653
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Note that since

span{(n)y,(n),,(n),,++,(n),,} = span{l,n,n*---,n" |

therefore, P, [n] can also be expressed as a linear combination of 1, »,

n%, ..., n".
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[Discrete Legendre Polynomials]

wln]|=1 nel0,N]

The Discrete Legendre Polynomial of Order m

_______________________________________________________

N (N+m+DI(N-m)! . _
D B[n]R[n]=1  @m+DN!) if m=s
h > 0 l'fm;ts
P [n]=1 E[n]zl_zﬁ

_ (n), _ (n), (n),
P2[n]—1—6]<l]+6(N)2 })3[71]—1—12%+30(N)2—20(N)3

_ (n), (n), (n),
})4[}1]—1—20%4-90(]\])2 —140(]\[)3 +7O(N)4




N=6
14 © })()C[n] ©
0.5 Pl[n] —
| R[] 7]
P,[n]

-1.5

656
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[Hahn Polynomials} When a = = -1/2, it is analogous to
Two extra parameters: o, [ the continuous Chebyshev polynomial
on page 319.
+a\(N—-n+
w[n]:(n j( 7 'Bj nel0,N]
n N —n

If o or f1s not an integer, it can still be defined:

I(n+a+1) [(N-n+p+1)
F(n+)I(a+)T(N-n+1)T(S+1)

wn] =

The Hahn Polynomial of Order m

—m,—n,m+a+,b’+l;j§
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F a,,da,, ',Clp; h . f .
: ergeometric tunction
P g bl,bz,‘“,b ‘ yp g

q’

r a),dy, -, d ial(k)aék)ma;k) i
plq - GIGERIGEA
bbb bOBP b ") k!

.7 q;Z k=0

where a® is called the rising factorial function:

a® =1

a“ =a(a+1)(a+2) (a+k-1)



discrete

continuous 659

Jacobi polynomials

Laguerre polynomials

Hermite polynomials
(refer to page 322)

o= (0 discrete Legendre

polynomials

o = -1/2 discrete Chebyshev

. analogous
Hahn polynomials >

. , analogous
Meixner polynomials g

. analogous
Krawtchouk polynomials >

Hahn _ discret§
polynomials &~ b ultraspher.lcal
a, B polynomials

(discrete Jacobi
polynomials)

polynomials (I)

o= 1/2 discrete Chebyshev

polynomials (II)
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When A=¢*, b=1,itis analogous

Two extra parameters: 4, b to the continuous  Laguerre
polynomial on page 320.

[Meixner Polynomials]

wln]|=A" b:') nel0,0)

The Meixner Polynomial of Order m

—m,—n,
Pm [n] = 2E b,l_L

w N (=)
A € _nzz(; n!
Note: When
A=e"*, b=1
then
. (the same weight function as the continuous
win]=e Laguarre polynomial)



As shown on the next page, when p = 661

1/2, 1t 1s analogous to the continuous
Hermite polynomial on page 322.

[Krawtchouk Polynomials]

One extra parameter: p

win]=p" (1= p)"” (N j ne[0,N]

n

(Similar to the Binomial distribution)
The Krawtchouk Polynomial of Order m
—m,—n,

YA
P

Pm[n]: 2E



662

il=p =) (7]

n
Note: When
p=1/2

then

Moreover, when N — o

lim N ~ 2% exp _(n—N/2)2
N-owo| p _Q/Nﬂ-/z N/2
which 1s near to the weight function of the continuous Hermite

polynomial. Therefore, the Krawtchouk polynomial 1s also called
the discrete Hermite polynomial.
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+4%-- Approximation Using Other Norms

Until now, we discuss the approximation problem based on the L, norm,
that 1s, to find x that can minimize

y - Ax|

Hy — AXH = \/Z(y[n] — Z Aln,m]x j

n=l1

However, how do we minimize the approximation problem based on
the L, norm, that is, to find x that can minimize
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The problem of minimizing

ly—Ax|,

1s always hard to solve if o # 2.

However, when o > 1, ||y — Ax|| , 1s convex, which means that ||y — Ax]|,
has only one local minimum (i.e., local minimum = global minimum).
Therefore, many numerical methods (the simplex algorithm, Golden
search, gradient descent, Newton’s method, .....) can be applied to

minimize |y — Ax||,. We describe the general method to minimize
ly — Ax||, when a > 1 as follows.

[t 1s even harder to minimize ||y — Ax||, when a < 1.



(Problem): Determine

X =argmin|y — Ax|

[t means that to find x that can minimize ||y — Ax||,

Suppose that

size(A) = NxM, length(y) =N, length(x) =M
M<N

(Step 1): Imtial: x=0, E,=]|yl,, c=1, #y=0

Set A (the threshold for error convergence)

Set T (the upper bound of times for no error reduction)
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(Step 2): Choose the feasible direction as follows.

(Method 1): Assign the feasible direction b as the projection

of y — AX on
Span(Al,Az, ...... :AM)
where A, A,, ..., A,y are columns of A.

(Method 2): If the projection 1s 0 or ¢ = 0 (1.e., the adjusting step
in the previous iteration is zero)
Generate d,, randomly.
Then, set the feasible direction b as

M
b=>d,A, /A,
m=1

(Step 3): Find ¢ to minimize ||y — A(x + ¢b)||,
¢ =argmin |y — A(x+cb)|_

Then, update x as
X<X+cle,e, e, ] if b=eA +e,A,+-e, A,
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(Step 4): Determine £, = ||y — Ax||,,. If

E,—E <A
then set

try < try+1
Otherwise, set try = 0.

(Step 5): If try < T
Set £, = £, and return to (Step 2)
Iftry>T:

The process 1s terminated and the solution is obtained.



Flowchart

.. 668
Initial: x=0

|

Assign the feasible direction b as the projection

» of y — Ax on span(Columns of A)
(If the projection is 0, assign b randomly)

Find c iteratively to minimize ||y — A(x + cb)||,

|

Update x by x =x+c|e,e,, -, e,]
Iif b=eA, +e,A,+ e, A,

No

Whether the error does not decrease for 7" times
Yesl

Obtain the solution of x



[Example 1] Suppose that
y=[2 3 3 4 5 4 5]
Try to express y as x,b, + x,b, + x;b; where
b,=[1 1 1111 1j
b,=[1 2 3 4 5 6 7]
b,=[1 -1 1 -1 1 -1 1]

such that

ly=xb, —x,b, —x;b,| is minimized
(Solution): (Step 1): Imitially, set
[xl’x27x3] — [03070]

Ey =y =xb; —x,b, —x;bs], =26
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(Step 2): 670
Then, we find the projection of y — Ob, — Ob, — Ob; =y on Span(b,, b,, b;):

bl’ b27 b3 al, az, a3
Gram-Schmidt

=L a,= 1_[3 2 -1 01 23

alﬁ[lllllll] 22ﬁ[ ]
1

a.= L [3 —4 3 -4 3 —4 3

WL ]
Since

> y[n]a,[n]=9.2871 Y y[n]a,[n]=2.4568

> y[n]a;[n]=0.1091
the projection of y on Span(by, b,, bs) 1s

9.2871a, +2.4568a, +0.1091a, =1.8512b, +0.4643b, +0.0417b,



Therefore, we choose the feasible direction b as

b=1.8512b, +0.4643b, +0.0417b,
=[2.3571, 2.7381, 3.2857, 3.6667, 4.2143, 4.5952, 5.1429]

(Step 3): Find ¢ to minimize ||y — A(x + ¢b)||,

30

ly — A(x + cb)||,

15 -

10 -

5+

0 O.J2 O.I4 O.IS O.I8 ’; 1?2 1.l4 1}6 1}8 2
c
The solution is ¢ = 0.9722. Then, update x as

X < x+0.9722b =[1.7998, 0.4514, 0.0405]
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(Step 4): Determine the residue

y —Ax =[-0.2917, 0.338, —0.1944, 0.4352, 0.9028, —0.4676, O]

and calculate the error
E, =y — Ax||; = 2.6296

(Step 5): Return to (Step 2)

After 60-110 times of iterations, we obtain

x=[1.75, 0.5, —0.25]
y -Ax=[0,0,0,0,1,-1, 0]

ly — Ax|l, =2



