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7. Discrete Vector Set Approximation
Section 7.1  Discrete Orthogonal Vector Set Expansion

Section 7.4  Discrete Orthogonal Polynomials (只教不考)

Section 7.2  Non-Orthogonal Discrete Vector Set Expansion

Section 7.3  Generalized Inverse 

Ax y

Problem: How do we find x such that 

y Ax

is minimized?

(L2 norm of y–Ax )

A and y are known.
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Discrete Vector 
Set Expansion

Orthogonal

Complete (Case 1) (Sec. 7-1-2)

Discrete Orthogonal 
Transforms  (Secs. 6-7, 7.1.1)
Discrete Orthogonal 
Polynomials (Sec. 7-4)

Non-Orthogonal
Independent 
Set (Sec. 7-2)

Dependent Set (Case 5) (Sec. 7-3)

Incomplete (Case 2) (Sec. 7-1-3)

Complete (Case 3) 
(Secs. 7.2.1, 7.2.2)

Incomplete (Case 4) 
(Secs. 7.2.2, 7.2.3)
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7.1.1 Discrete Orthogonal Matrix

7.1 Discrete Orthogonal Vector Set Expansion

[Orthogonal 
(Column Form)]
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[Orthogonal (Column Form)]

Suppose that A is an MxN matrix. If all the columns of A are
orthogonal, then

HA A D

where D is an NxN orthogonal matrix. Moreover, if all the columns of
A are orthonormal, then

HA A I
where I is an NxN identity matrix. 

(Note: An orthonormal matrix is also called a unitary matrix. )

( 1 )nd for all n
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[Orthogonal
(Row Form)]
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Suppose that A is an MxN matrix. If all the rows of A are orthogonal,
then

HAA D

where D is an MxM orthogonal matrix. Moreover, if all the rows of A
are orthonormal, then

HAA I
where I is an MxM identity matrix. 

(Note: If a set of vectors is orthogonal, then these vectors should be
linearly independent. Therefore, if the rows of A are orthogonal, then
M  N should be satisfied.)

[Orthogonal (Row Form)]

orthogonal (row form)   orthogonal (column form)
orthonormal (row form)  = orthonormal (column form)
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[Inverse of an Orthogonal Matrix]

If A is a square matrix (i.e.,M = N)

1 1  HA A D

(4) If all the rows of A are orthonormal, AAH= I, then
1  HA A

(1) If all the columns of A are orthogonal, AHA= D, then
1 1  HA D A

(2) If all the columns of A are orthonormal, AHA= I, then
1  HA A

(3) If all the rows of A are orthogonal, AAH= D, then
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[Example of Orthogonal Matrix]

 DFT

 Discrete Cosine Transform 

 Walsh (Hadamard Transform)

 Haar Transform 
 Discrete Orthogonal Polynomial Matrices 

[Example 1]

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 
   

  
   

4W

1/ 4 1/ 4 1/ 4 1/ 4
1/ 4 1/ 4 1/ 4 1/ 41

4 1/ 4 1/ 4 1/ 4 1/ 4
1/ 4 1/ 4 1/ 4 1/ 4

H

 
    

  
   

-1
4 4W IW

4H
4 4W W I

both row-form and
column-form orthogonal

(row-form orthogonal)
(row-form orthogonal)
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[Duality Property of Orthogonal Matrices]

If all the columns of a square matrix A are orthonormal, then all the rows 
of A are orthonormal, too.  

(Proof): If 
HA A I

then since AH= A-1, we have   
1 HAA AA I

Therefore, all the rows of A are orthonormal, too. 



615[Example 2] Note that, if

1 1 1
1 2 0
1 1 1

 
   

  

A

then the columns of A are orthogonal. However, the rows of A are not
orthogonal.

If we perform normalization for the columns A and obtain B:

1/ 3 1/ 6 1/ 2

1/ 3 2 / 6 0

1/ 3 1/ 6 1/ 2

 
 

  
 

  

B

then both the columns and the rows of B are orthonormal:

,H H B B I BB I
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7.1.2 Discrete Orthogonal Vector Set Expansion of
the Complete Case (Case 1)

Suppose that b1[n], b2[n], …. bN[n] forms a complete and orthogonal
set in CN:

   
1

0N

m k
n m

for m k
b n b n

d for m k





  



If we want to expand y[n] by a linear combination of bm[n] (m = 1, 2,
…, N):

   
1

N

m m
m

y n x b n




then, analogous to page 277,
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b n b n
















617From the view point of the matrix

If

 1 2 3
T

Nx x x xx   [1] [2] [3] [ ] Ty y y y Ny 
then the problem can be re-expressed as

Ax y

H A A D where  
1

0
,

[ ] [ ]
N

m m
k

if m n
D m n

b k b k if m n




  


Since

we have

1 1 ,H  x A y D A y
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[Parseval’s Theorem for Discrete Orthogonal Matrix]

Ax y
If

and the columns of A are orthogonal, then

   2 2

1 1

N N

n
n n
y n d x n

 

  where
2

1
[ , ]

N

n
k

d A k n




(Proof): 
H H H H y y x A Ax x Dx

Parseval’s theorem for the DFT and the Walsh transform:

   2 2

1 1

N N

n n
y n N x n

 

 
Parseval’s theorem for the DCT

   2 2

1 1

N N

n n
y n x n

 

 

[Example 3]
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7.1.3 Discrete Orthogonal Basis Expansion of the
Incomplete Case (Case 2)

Suppose that b1[n], b2[n], …. bM[n] forms an incomplete and
orthogonal set in CN butM < N:
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m k
n m

for m k
b n b n

d for m k





  



If we want to expand y[n] by a linear combination of bm[n] (m = 1, 2,
…,M):

   
1

M

m m
m

y n x b n


 
then
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The formulas are similar to
those of Case 1, except for
that is replaced by y n 

 y n 



620Note:

(1) Since b1[n], b2[n], …. bM[n] can be viewed as a subset of a complete
and orthogonal set {b1[n], b2[n], …., bM[n], bM+1[n], …, bN [n]}, the
method to determine the linear combination coefficients xm is all the
same as that of the complete case.



621Note:

(2) Determine xm by can minimize       
1 1

/
N N

m m m m
n n

x y n b n b n b n 
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(from Parseval’s theorem on page 618)
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[Example 4] Suppose that

 1 1 5 5 6 6 5 4 4 3 3 Ty

 1 1 1 1 1 1 1 1 1 1 1 T1b
Try to expand y as a linear combination of 

and  5 4 3 2 1 0 1 2 3 4 5 T     2b

(Solution): It is obvious that b1 and b2 are orthogonal. Therefore, 

   

   

11

1
1

1 11
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such that 1 2x x 1 2y b b is minimized. 
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Blue: y 43 6
11 551 2b bRed: 

2 2 2 2 2 2
1 2 1 2 29.6x x x x     1 2 1 2y b b y b b

1 2 5.4406x x  1 2y b b
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7.2 Non-Orthogonal Discrete Basis Expansion

7.2.1 Method 1: Matrix Inverse

Suppose that{b1[n], b2[n], b3[n], ………., bN[n]} are linearly  independent 
and complete vector set in CN but are not orthogonal. 
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To express y[n]  CN by a linear combination ofb1[n], b2[n], b3[n], 
………., bN[n]}

   
1

N
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m

y n x b n



we first construct a matrix A:

(Case 3)



625Then,
-1x = A y

where
 1 2 3

T
Nx x x xx   [1] [2] [3] [ ] Ty y y y Ny 

[Dual Orthogonal] 

{b1[n], b2[n], b3[n], ………., bN[n]} are dual orthogonal to {1[n], 
2[n], 3[n], ………., N[n]} if:   

   
1

0N

m k
m m

if m k
b n n

u if m k





  


In fact, they are also dual orthonormal if um = 1. 
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If
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then {b1[n], b2[n], b3[n], ………., bN[n]} are dual orthonormal to {1[n], 
2[n], 3[n], ………., N[n]}:   
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0
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conjugation

1 A A I
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6277.2.2 Method 2: Gram-Schmidt

Suppose that{b1[n], b2[n], ……, bM[n]} are linearly independent but not
orthogonal. Then we can follow the Gram-Schmidt process to convert it
into an orthogonal set {a1[n], a2[n], ……, aM[n]} and perform expansion.

   
 

1
1

1

b n
a n

b n
 m = 1

         
1

1 1

m N

m m m k k
k n

g n b n b n a n a n




 

    
 

 

   
 

m
m

m

g n
a n

g n


m = m+1

(Cases 3, 4)

(applicable for both complete and incomplete case)
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Step 1: Convert {b1[n], b2[n], ……, bM[n]} into an orthogonal set
{a1[n], a2[n], ……, aM[n]} by the Gram-Schmidt method.   

Step 2: Expand y[n] by {a1[n], a2[n], ……, aM[n]}

Find x1, x2, …, xM to minimize 1 2 Mx x x   1 2 My b b b

by the Gram-Schmidt method. 

   
1

M

m m
m

y n z a n


     
1

N

m m
n

z y n b n



 (from page 619)

Step 3: If
   ,

1

k

k k m m
m

a n c b n


 
then

       , ,
1 1 1 1

M k M M M

k k m m k k m m m m
k m m k m m

y n z c b n z c b n x b n
    

    

,

M

m k k m
k m

x z c
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[Example 1] Suppose that 

 2 3 3 4 5 4 5 Ty

Try to express y as x1b1 + x2b2 + x3b3 where

 1 1 1 1 1 1 1 T1b

 1 2 3 4 5 6 7 T2b

 1 1 1 1 1 1 1 T   3b

such that
1 2 3x x x  1 2 3y b b b is minimized

using the Gram-Schmidt method. 
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(Solution):  

 1 1 1 1 1 1 1 1 1
7 7

  1 1
1

1
bb

b
a

 

7

2 1
1

[ ] [ ] 4 7 4

3 2 1 0 1 2 3
n
b n a n



     

   

2 2 1 2 1 2 1g b a b a b b

 2 1 1 3 2 1 0 1 2 3
7 22 7 27 7

      2 2
1

2
2 2a g

g
b bg

 

7 7

3 1 3 2
1 1

1 1[ ] [ ] [ ] [ ] 0 77
2 3 4 3 4 3 4 37

n n
b n a n b n a n

 

       

   

 3 3 1 2 3 1 2 3 1g b a a b a a b b

 
2

7
4 21

71 1 3 4 3 4 3 4 3
4 21 4 1 2 21
     3 1

3 3

3
3a bg

g
bg
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Since

   
7

1
1

26
7n

y n a n


    
7

2
1

13
2 7n

y n a n




   
7

3
1

1
2 21n

y n a n




Therefore

       1 2 3
26 13 1

7 2 7 2 21
y n a n a n a n  

       1 2 3
311 13 1
168 28 24

99 115 138 154 177 193 216
42 42 42 42 42 42 42

y n b n b n b n  
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   1
26

7
y n a n

     

 

1 2

3

26 13
7 2 7
1

2 21

y n a n a n

a n

 



     1 2
26 13

7 2 7
y n a n a n 
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7.2.3 Method 3: Least Square Approximation

Suppose that{b1[n], b2[n], ……, bM[n]} are real and linearly independent
but not orthogonal and incomplete. If we want to find xm such that

1 2 M ME x x x    1 2y b b b

is minimized, we can also apply the least square approximation method.
2

2

1 1
[ ] [ ]

N M

k k
n k

E y n x b n
 

   
 

 

2

1 1 1
[ ] [ ] 2 [ ] [ ]

N M M

k k k k
m mn k k
E y n x b n y n x b nx x  

                 
  

1 1
2 [ ] [ ] [ ]

N M

m k k
n k

b n y n x b n
 

    
 

 

1 1 1
2 [ ] [ ] 2 [ ] [ ]
N M N

m k m k
n k n
b n y n x b n b n
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Therefore, if we want

2 0
m
Ex

 
 for m = 1, 2, …, M

then

1 1 1
[ ] [ ] [ ] [ ]

M N N

k m k m
k n n
x b n b n b n y n

  

   for m = 1, 2, …, M

Cx z
Therefore,

 1 2
T

Mx x xx  1 2
1 1 1

[ ] [ ] [ ] [ ] [ ] [ ]
TN N N

M
n n n
b n y n b n y n b n y n

  

    
  z 

1x C z

1 1 1 2 1
1 1 1

2 1 2 2 2
1 1 1

1 2
1 1 1

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

N N N

M
n n n
N N N

M
n n n

N N N

M M M M
n n n

b n b n b n b n b n b n

b n b n b n b n b n b n

b n b n b n b n b n b n

  

  

  

 
 
 
 
   
 
 
 
  

  

  

  

C





   



where



635Also note that, if

then
 TC A A

Tz A y where       1 2 Ty y y My 

Therefore, from 1x C z , we have

1( ) T Tx A A A y

       
       
       

       

1 2 3

1 2 3

1 2 3

1 2 3

1 1 1 1
2 2 2 2
3 3 3 3

M

M

M

M

b b b b
b b b b
b b b b

b N b N b N b N

 
 
 
 
 
 
  

A
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[Example 2] Suppose that 

 2 3 3 4 5 4 5 Ty

Try to express y as x1b1 + x2b2 + x3b3 where

 1 1 1 1 1 1 1 T1b

 1 2 3 4 5 6 7 T2b

 1 1 1 1 1 1 1 T   3b

such that
1 2 3x x x  1 2 3y b b b is minimized

using the least square approximation method. 



637
First, we construct the matrix 1 1 1

1 2 1
1 3 1
1 4 1
1 5 1
1 6 1
1 7 1

 
  
 
   
 
  
  

A

Since
7 28 1
28 140 4
1 4 7

T
 
   
  

A A 1

241 48 7
1( ) 48 12 0336

7 0 49

T 

  
   
  

A A

1

93 76 45 28 3 20 51
1( ) 18 12 6 0 6 12 18168

21 28 21 28 21 28 21

T T

   
     

    

A A A

1( ) T Tx A A A ytherefore, from

1 2 3b b b
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1

2

3

2

3
3

93 76 45 28 3 20 51 3
1 18 12 6 0 6 12 18 4168

21 28 21 28 21 28 21 5
4
5

11/168
13 / 28
1/ 24

x
x
x

 
 
 

     
 



       
    



   



 
 

     
  

 

 



       1 2 3
311 13 1
168 28 24

99 115 138 154 177 193 216
42 42 42 42 42 42 42

y n b n b n b n  

   

(the same as Example 1)
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7.3 Generalized Inverse
Remember that, for the case where the vector sets are linearly
independent and complete, one can use the matrix inverse method
(pages 624, 625) to determine the linear combination coefficients:

-1x = A y
If
then

y = Ax

However, when
(1) The vector sets are not linearly independent (i.e., det(A) = 0)
(2) The number of vector sets is smaller than the vector length

(i.e., A is not a square matrix)
A-1 is hard to be determined.
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[Definition] Generalized Inverse

For an matrix A, if there is a matrix A+ such that 

 AA A A

then A+ is called the generalized inverse of A. 

We always use A+ to denote the generalized inverse of A.   
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[Additional Definitions for Generalized Inverse]

 AA A A(1)

(2)   A AA A

(3)  H AA AA

(4)  H A A A A

If (1) is satisfied, then A+ is called the generalized inverse of A.

If (1) and (2) are satisfied, then A+ is called the reflexive generalized
inverse of A.

If (1), (2), (3), and (4) are all satisfied, then A+ is called the pseudo
inverse of A.

pseudo inverse  
reflexive 
generalized 
inverse 


generalized 
inverse 
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 size M N A

M = N

M > N

M < N

det(A)  0 (Case 1)

det(A) = 0 (Case 3)

columns are independent (Case 2) 

columns are dependent (Case 4) 

columns must be dependent (Case 4) 

(columns are independent) 

(columns are dependent) 
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[Case 1] If A is a square matrix and all the columns of A are linearly
independent, then

1 A A

  AA A AI A
Note that, in this case,

[Case 2] If A is an MxN matrix, N < M, and all the columns of A are
linearly independent, then

1( )  T TA A A A

Note that, in this case,
1( )  T TAA A A A A A A A

Also note that it is the same as the least square approximation method 
introduced in subsection 7-2-3
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[Case 3] Suppose that A is a square matrix and some columns of A
are dependent. Then, in this case

 det 0A

and some of the eigenvalues of A are equal to zero.

[Case 3-1] Suppose that the eigenvector-eigenvalue decomposition of
A exists

 -1A EDE
where D is a diagonal matrix where the diagonal entries are the
eigenvalues of A.

 ,
0
n if m n

D m n
if m n

 
  

Then, the generalized inverse of A is

+ + -1A ED E where  +

1/ 0
, 0 0

0

n n

n

if m n and
D m n if m n and

if m n

 


 
  
 



645Note that, in this case,

If

   -1 -1 -1 -1AA A EDE ED E EDE EDD DE

S DD D
then

  1, n n n nS n n      if  n  0

 , 0 0n nS n n    if  n = 0

 , 0S m n  if  m  n

Therefore,
 S DD D D

  -1AA A EDE A
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[Example 1] Suppose that 

1 1 0
1 2 1
0 1 1

 
   
  

A

Determine the generalized inverse of A.  

(Solution): The eigenvalues of A is  = 0, 1, 3 
The eigenvectors are 

 1 1 1 T corresponding to  = 0

 1 0 1 T corresponding to  = 1

 1 2 1 T corresponding to  = 3
Therefore, the eigenvector-eigenvalue decomposition of A is

11 1 1 0 0 0 1 1 1
1 0 2 0 1 0 1 0 2

1 1 1 0 0 3 1 1 1


     
            

           

A
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1 1 1 0 0 0 1/ 3 1/ 3 1/ 3
1 0 2 0 1 0 1/ 2 0 1/ 2

1 1 1 0 0 3 1/ 6 2 / 6 1/ 6

     
            

          

A

Since

we have
1 1 1 0 0 0 1/ 3 1/ 3 1/ 3
1 0 2 0 1/1 0 1/ 2 0 1/ 2

1 1 1 0 0 1/ 3 1/ 6 2 / 6 1/ 6



     
            

          

A

5 / 9 1/ 9 4 / 9
1/ 9 2 / 9 1/ 9
4 / 9 1/ 9 5 / 9



 
   
  

A

One can show that
1 1 0
1 2 1
0 1 1



 
   
  

AA A A
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[Generalized Inverse when the Eigenvectors are not Complete]

 -1A EDEIf where

 
 
 
 
 
 

1

2

K

D 0 0
0 D 0

D

0 0 D




   


,kkD or

1 0 0
0 1 0

0 0 1
0 0 0

k

k

k

k







 
 
 
 
 
 
  




    



0 0
0 0

,

0 0

k

k

k






 
 
 
 
 
 




   


then
  -1A ED E where



 
 
 
 
 
 

+
1

+
2

+
K

D 0 0
0 D 0

D

0 0 D




   


[Case 3-2]



649When k  0 

,kkDif then 1/ ,k+
kD

0 0
0 0

,

0 0

k

k

k






 
 
 
 
 
 

kD




   


(1) If then 

1/ 0 0
0 1/ 0

,

0 0 1/

k

k

k






 
 
 
 
 
 

+
kD




   


1 0 0
0 1 0

,
0 0 1
0 0 0

k

k

k

k







 
 
 

  
 
 
  

kD




    



(2) If 

1 2 3

1 2

3

1 2

1

( 1)
0

0 0
0 0 0

M M
k k k k

k k

k

k k

k

   
 


 



   

 



 



  
  
 
 

 
  

+
kD


 

   



(suppose that the size of Dk is MxM) 
One can show that +

k kD D I

k  0 



650When k = 0 

,kkDif then 0,+
kD

0 0
0 0

,

0 0

k

k

k






 
 
 
 
 
 

kD




   


(3) If then 

0 0 0
0 0 0

,

0 0 0

 
 
 
 
 
 

+
kD




   


0 1 0 0
0 0 1 0

,
0 0 0 1
0 0 0 0

 
 
 

  
 
 
  

kD




    



(4) If 

0 0 0 0
1 0 0 0
0 1 0 0

0 0 1 0

 
 
 

  
 
 
  

+
kD





    


then 

k = 0 
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Note that if 

0 1 0 0
0 0 1 0

,
0 0 0 1
0 0 0 0

 
 
 

  
 
 
  

kD




    



then 

0 0 0 0
1 0 0 0
0 1 0 0

0 0 1 0

 
 
 

  
 
 
  

+
kD





    


0 0 0 0
0 1 0 0
0 0 1 0

0 0 0 1

 
 
 

  
 
 
  

+
k kD D





    


+
k k k kD D D D
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[Case 4] Suppose that A is anMxN matrix, when
(i) M < N or
(ii) N <M but some column vectors are not linearly independent,
the methods introduced in this chapter cannot be applied.

We can use the singular value decomposition (SVD) method
introduced in Section 8.1 to solve the generalized inverse problem in
Cases 1, 2, 3, and 4.
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7.4 Discrete Orthogonal Polynomials

[Definition of Discrete Orthogonal Polynomials]

(只教不考)

Suppose that there is a set of discrete functions as follows

  ,
0

( )
m

m m k k
k

P n c n




where (n)k is called the falling factorial function:
0( ) 1,n 

    ( ) 1 2 1kn n n n n k    
If

     
1

0

0
n

m s
n n
w n P n P n when m s



 

then we call {P0[n], P1[n], P2[n], …….} a discrete orthogonal
polynomial set within n  [n0, n1] with the weight w[n]

m = 0, 1, 2, ……

1( ) ,n n 2( ) ( 1),n n n 
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Note that since

   2
0 1 2( ) ,( ) ,( ) , ,( ) 1, , , , m

mspan n n n n span n n n 

therefore, Pm[n] can also be expressed as a linear combination of 1, n,
n2, …, nm.
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[Discrete Legendre Polynomials]
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The Discrete Legendre Polynomial of Order m



656

 0P n

 1P n

 2P n

 3P n

 3P n

N = 6
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[Hahn Polynomials]

 
n N n

w n
n N n
     

     

Two extra parameters: , 

 0,n N

If  or  is not an integer, it can still be defined:

   
   

 
   

1 1
1 1 1 1
n N n

w n
n N n

 
 

      

        

  3 2

, , 1;
1, ;1m

m n m
P n F

N
 


     

    

The Hahn Polynomial of Order m

When  =  = -1/2, it is analogous to
the continuous Chebyshev polynomial
on page 319.
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1 2

1 2

, , , ;
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, , , ;
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p q
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hypergeometric function 
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where a(k) is called the rising factorial function: 
(0) 1a 

    ( ) 1 2 1ka a a a a k    
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Hahn 
polynomials

, 

discrete
ultraspherical
polynomials 

 = 

 = 0

 = -1/2

 = 1/2

discrete Legendre 
polynomials 

discrete Chebyshev 
polynomials (I) 

discrete Chebyshev 
polynomials (II) 

Hahn polynomials

discrete
analogous

continuous 

Jacobi polynomials

Meixner polynomials
analogous Laguerre polynomials

Krawtchouk polynomials
analogous

Hermite polynomials

(discrete Jacobi 
polynomials)

(refer to page 322)
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[Meixner Polynomials]

 
( )

!
nn bw n A n

Two extra parameters: A, b

 0,n 

The Meixner Polynomial of Order m

  2 1

, ;
1;1m

m n
P n F

b A

  
 
  

Note: When

, 1A e b 

then

  nw n e 
(the same weight function as the continuous
Laguarre polynomial)

When , it is analogous
to the continuous Laguerre
polynomial on page 320.

0

( )
!

n
x

n

xe n








, 1A e b 
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[Krawtchouk Polynomials]

   1 N nn N
w n p p

n
  

   
 

One extra parameter: p

 0,n N

The Krawtchouk Polynomial of Order m

  2 1

, ;
1;m

m n
P n F N p

  
 
 
 

As shown on the next page, when p =
1/2, it is analogous to the continuous
Hermite polynomial on page 322.

(Similar to the Binomial distribution)
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Note: When

   1 N nn N
w n p p

n
  

   
 

1/ 2p 

then
 

N
w n

n
 

  
 

Moreover, when N
2( / 2)2lim exp / 2/ 2

N

N

N n N
Nn N

      
  

which is near to the weight function of the continuous Hermite
polynomial. Therefore, the Krawtchouk polynomial is also called
the discrete Hermite polynomial.



663
附錄十 Approximation Using Other Norms

Until now, we discuss the approximation problem based on the L2 norm, 
that is, to find x that can minimize  

y Ax

2

1 1
[ ] [ , ]

N M

m
n m

y n A n m x
 

    
 

 y Ax

However, how do we minimize the approximation problem based on 
the L norm, that is, to find x that can minimize 

y Ax

1 1
[ ] [ , ]

N M

m
n m
y n A n m x





 

   y Ax
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y Ax
The problem of minimizing

is always hard to solve if   2. 

However, when   1, ||y – Ax|| is convex, which means that ||y – Ax||
has only one local minimum (i.e., local minimum = global minimum).
Therefore, many numerical methods (the simplex algorithm, Golden
search, gradient descent, Newton’s method, …..) can be applied to
minimize ||y – Ax|| . We describe the general method to minimize
||y – Ax|| when   1 as follows.

It is even harder to minimize ||y – Ax|| when  < 1.
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Suppose that 

size(A) = NM,   

arg min  
x

x y Ax
(Problem): Determine

It means that to find x that can minimize ||y – Ax||

length(y) = N,       length(x) = M

M < N

Initial:     x = 0,    E0 = ||y|| ,   c = 1,    try = 0   (Step 1):

Set  (the threshold for error convergence)
Set T (the upper bound of times for no error reduction)



666

(Method 2): If the projection is 0 or c = 0 (i.e., the adjusting step 
in the previous iteration is zero)
Generate dm randomly. 
Then,  set the feasible direction b as  

1
/

M

m
m
d



 m mb A A

(Step 3): Find c to minimize ||y – A(x + cb)||

arg min ( )
c

c c   y A x b

Then, update x as  
 1 2, , , Mc e e e x x 

(Step 2):   Choose the feasible direction as follows.  
(Method 1): Assign the feasible direction b as the projection

of y – Ax on   
 , , ,span 1 2 MA A A

where A1, A2, …, AM are columns of A.   

if 1 2 Me e e  1 2 Mb A A A
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(Step 5): If try  T: 
Set E0 = E1 and return to (Step 2)

If try > T: 
The process is terminated and the solution is obtained. 

(Step 4): Determine E1 = ||y – Ax|| . If

0 1E E  
then set

1try try 
Otherwise, set try = 0.  
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Initial:     x = 0

Assign the feasible direction b as the projection
of y – Ax on span(Columns of A)
(If the projection is 0, assign b randomly)

Flowchart

Find c iteratively to minimize ||y – A(x + cb)||

Update x by  1 2, , , Mc e e e x x 

Whether the error does not decrease for T times
No

Yes

Obtain the solution of x

if 1 2 Me e e  1 2 Mb A A A



669[Example 1] Suppose that 

 2 3 3 4 5 4 5y

Try to express y as x1b1 + x2b2 + x3b3 where

 1 1 1 1 1 1 11b

 1 2 3 4 5 6 72b

 1 1 1 1 1 1 1   3b
such that

1 2 3 1x x x  1 2 3y b b b is minimized

(Solution):  (Step 1): Initially, set 

   1 2 3, , 0,0,0x x x 

0 1 2 3 1 26E x x x    1 2 3y b b b



670

Then, we find the projection of y – 0b1 – 0b2 – 0b3 = y on Span(b1, b2, b3): 

b1, b2, b3

Gram-Schmidt
a1, a2, a3

 1 1 1 1 1 1 1 1
7

1a  1 3 2 1 0 1 2 3
2 7

   2a

 1 3 4 3 4 3 4 3
2 21

   3a

Since
    9.2871

n
n n  1y a     2.4568

n
n n  2y a

    0.1091
n

n n  3y a

the projection of y on Span(b1, b2, b3) is

9.2871 2.4568 0.1091 1.8512 0.4643 0.0417    1 2 3 1 2 3a a a b b b

(Step 2): 
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Therefore, we choose the feasible direction b as 

 
1.8512 0.4643 0.0417
2.3571, 2.7381, 3.2857, 3.6667, 4.2143, 4.5952, 5.1429

  


1 2 3b b b b

(Step 3): Find c to minimize ||y – A(x + cb)||1

c

||y – A(x + cb)||1

The solution is c = 0.9722. Then, update x as  

 0.9722 1.7998, 0.4514, 0.0405  x x b
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(Step 4): Determine the residue

y –Ax = 0.2917, 0.338, 0.1944, 0.4352, 0.9028, 0.4676, 0  

E1 = ||y – Ax||1 = 2.6296 
and calculate the error

(Step 5): Return to (Step 2)
:
:
:

After 60-110 times of iterations, we obtain 

 1.75, 0.5, 0.25 x
y –Ax = [0, 0, 0, 0, 1, -1, 0]

||y – Ax||1 = 2 


