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@ Principal Component Analysis (PCA)

STEM: Matrix Decompositions May 28, 2024 54



The Data Vectors

o Consider a set of data \?.tors

Xm = |:xm,1 xm,2 xm,3 cee xm,N] iKN (87)

e The number of data vectors: @
o The length of a data vector: N
Usually M > N.

Applications S =t
o Audio signals W %C:‘
o Images
o Communication signals
o

Array signal processing (linear arrays or planar arrays)
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Principal Component Analysis (PCA)

Mean Subtraction X =
e The mean vector X (as a row vector) is X2 — mvew-%/a
1 |
X = > xm X 2 (88)

_m: '-m'
1 < \jL::l\x(\/

e The new data vector a,, after subtracting the mean vector from x,,

a,, 2 x, —X. M= | A (89)
O vow  Vectors
 — VN
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The Data Matrix

A<
=l M
o The data matrlﬁ:g ([@ @ e

©1)
— _
ap X1 —X
a, X9 — X
Al |2l 2. (90)
alej Xy —X
o The data vector x,, can be expressed aus\xN jajm\}&,re,eg@
0 = en@®+ % (91)
where e,,, € CM satisfies

C-L. Liu (NTU)

o D th
len]; = LIt = em: | 1"
! 0 ifi#£m. - °
0
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Principal Component Analysis (PCA)

o According to Page 37, the SVD of A is

W

J&

,\\X

<\

—yuxvH
o«mwtg
- = %alu vH "N tering
Pl S

ulv1 —I—’12V2 +(o3 3v3 —+ .. —I—NVI"\',.

T

o The singular values satlsfy
012032032 ---2>0n =>0.

o The ith component of A is o;u, v/

——
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Principal Component Analysis (PCA)

: : : : N=2
Dimensionality Reduction (1/2)
- M
o We approxmate the matrix A b@components A Z
\DO
@ @ st (97)
= oyuy vl + oouevh + osusvl + -+ opupvi (98)

@ Dimensional reduction: L < N.
—  J

-1~ ﬁ\ _ ’H S~ 4 T nuwher

L/\ = 2 V\ng
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Principal Component Analysis (PCA)

Dimensionality Reduction (2/2)

L
~ A
Noss —

o \e! u;\is the mth entry of —%
° U (emui) is the combination coefficient. MXI
o Theset {vi vl ... vl contains the axes.

o A general form of the approximated data vectors is

@@) +X) (100)
LiZI R

where ¢, € C fort=1,2,... L.
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An Example of the PCA (1/4)

Problem

Use the PCA with L = 1 to find a regression line that approximates the points in([R>

x;=1[7 8], x%=1[9 8, x3=[10 10], x,=[11 12], x5=[13 12].

IX2

We assume that the combination coefficients are real numbers.

o (Solution) The number of data M = 5. (<
o The length of the data vector N = 2. c>°
o The mean vector CC"\
x = [10 10]. , > ()4
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An Example of the PCA (2/4)

@ The new data vectors

ap=[-3 —2], aa=[-1 —2], as=1[0 0], a, =1 2], a5=[3 2].

i

o The data matrix A and its SVD

-3 2] &
-1 =2| g,
A=|0 o~ (101)
1 2
3 218
BL

STEM: Matrix Decompositions May 28, 2024 62



An Example of the PCA (3/4)

o The SVD of A = UXVH, where S|
1
—0.6116  0.3549 0  0.0393 0.7060 (5.8416] 0
—0.3549 —0.6116 0  0.7060 —0.0393 0 (1.3695
@: 0 0 1.0000 0 0 , 0 o |,
0.3549  0.6116 0  0.7060 —0.0393 0 S» 0
0.6116 —0.3549 0  0.0393 0.7060 0 0
] —— ) )
Uy W Uy Uy U
@_ 0.7497 —0.6618
~10.6618 0.7497 |-
)
VoW
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An Example of the PCA (4/4)

e For L =1,in (97), we obtain

—0.6116
R —0.3549
A = (5.8416) 0 [0.7497  —0.6618)] .

0.3549 @

0.6116

ui

-

o According to (100) and page 61, an approximation of the data points is

= l 40,‘]497
(10 10] +@[0.7497 —0.6618], 7 21y (o407
[

where x v Eﬂz <o -0bLE ¢
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Selected Topics in Engineering Mathematics:

Least Squares Problems
LS

Chun-Lin Liu (21{&)

Department of Electrical Engineering
Graduate Institute of Communication Engineering

National Taiwan University
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@ Problem Formulation
The Full-Rank LS Problem
The RankcDefcint LS Problem

The Pseudo-Inverse of a Matrix

Concluding Remarks
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Problem Formulation

o A x b
Motivation D =
N N xRl =
e Find a vector x € C¥ such that :

Mf\j Ax —b. )

o The data matrix A € CM*N s given.

o The observation vector b € CM is given. D M< N
. . Mx |
The number of equations is <] M=AJ
The number of unknowns is &

Underdetermined systems: M < N< \ -0 q M >N
Overdetermined systems: M > N NE
—— > ] ||

Questions
o How many solutions u@

C-L. Liu (NTU) STEM: Squares Problem May 28, 2024




2
Examples of (1) e (A) [ | ][X,]: [I &

3 32
Underdetermined Systems Overdetermined Systems
l
177 13
T1| .
Laf-o. e fe-b o
M X Y

2%

The solutions to (2) are There are no solutions to (3).

*\v\‘h v«\’c@[y

-7

=2
R = ; VV\ﬁ\V‘/ .
c Usually, an overdetermine system has no
6“\‘”“" exact solution.

4 4

where ¢ € C.
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Problem Formulation

The Least Squares Problem (1/2)

o We aim to finlution such that
1 )3_:?

Ax ~b. :% @ i (4)
e The vector p-norm measures the proximity of Ax to b.
” ° “‘P € IR

Ax

2 |Ax =Dy, € 1% (5)
where p € [1, 00). D
p=t 42
2
0
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The Least Squares Problem (2/2)

The Least Squares (LS) Problem (p = 2)

) o éect/h/*e, nun T

TnAWmIZE
" y  —

igén [Ax —bl|, Z> nor m (6)
o The LS problem (6) is tractable for two reasons conver functmn (
© The solutions to (6) can be found readily. ] |\F p ell, M)

o Completion of squares
o The (complex) derivatives of the objective function g’l
S/O °R
@ The £y norm is invariant under unitary transformations. Namely,

i\\ U], = [Ivll,, s (7)
— </> Uv
for a_unitary matrix U. S =
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The Full-Rank LS Problem

Outline
Problem Formulation

© The Full-Rank LS Problem
The Rank-Deficient LS Problem
The Pseudo-Inverse of a Matrix

Concluding Remarks
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The Full-Rank LS Problem

The LS Solution(s) _ [ \

min ||Ax — bl ).

Let x1.5/be a solution to thew

Does x5 exist?

How do we find x1,57

Is the LS solution x5 unique?
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The Full-Rank LS Problem

N
V\\C,(A =
The Normal Equation  «, < Q\MD onelhO=N

Normal Equation

=Ya v
A [a" k5 -[a"b.] 7

o See Section 5 3.1 in [GVL2013] for the complete arguments
@ The minimum residual rpg

¢
{
é} < 2 ris = b — Axg. [x

©

o The size of rig

(pis¥® | Axis = bll,. (11)

May 28, 2024 10
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The Full-Rank LS Problem
_N

Remarks on the Normal Equation A= o~ M

o Assume that A € CM*N and M > N.
o If A has full column rank, then

o rank(A) = N. K N EN \
o rank ) = N. ({—WM \(mvlc> Pf '/ND W

o AMA is invertible.
o If A has full column rank, then the LS solution can be uniquely found by

o Interpretations of xrg
o Wiener-Hopf equation in Adaptive Signal P
e Singular values and singular vectors of
St JVSIIY
S\D
May 28, 2024 1



The Full-Rank LS Problem

The LS Solution and the SVD (1/4)

o We assume that rank(A) = N. ({J/{ celumn YDM’{C)
e The SVD of A is denoted by

N
A=UxV"= gaiuivi“. (13)

The matrix X is

o2

Om—myxn|’

N ,
Yy = diag(o1,09,...,0n) . (14)

The singular values satisfy o1 > 09 > --- > O'N
The unitary matrices U and V comprise left and right singular vectors.

U:[ul Uy ... uM], V:[Vl Vo ... VN]. (15)
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The LS Solution and the SVD (2/4)

o The unitary matrices U and V satisfy

U"U = Igp ViV =1y (16)

o Substituting (13) into (12) leads to

xis = ((UZVH)" (UEJV“))_1 (Usv"'b (17)

— (V" E— vH) T vsHUth (18)
(19) -

(20)
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The LS Solution and the SVD (3/4)

o From (14), the matrix associated with X can be expressed as

H ~ H
EHE)_l 2H _ EN EN EN (21)
Ovr—nyxnv|  |O—NyxnN Ov—nyxnN
-
= (Zx2y) BN Owxoi-m) (22)
= [Zy Onx-m)] (23)
o' 0 ... 0 0 ...0
0 R 0 0 ...0
= . (24)
0 0 ..oy 0 ...0
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The LS Solution and the SVD (4/4)

o Substituting (24) and (15) into (20) gives

GJ\’O‘W" gc\/\MTA/-t T;vt:ceg

® xpg is a linear combination of {vy,vy,...,Vn}.
o Two factors influence the combination coefficients

@ The inner product (b,u;) £ ul'b

© The singular value o;
e d? Veali® 94

/R/

WD <\N/\LL> RS

<N B v K </2»+r>'
P2
5L‘ )> May 25, 2024




The Size of the Minimum Residual

o (Exercise) It can be shown that the size of the minimum residual (denoted by prs)
satisfies

pLS; [\ E\?Sp,s ’}z\lz

2
pis = % u?b} g (26)
i:f]y’—i—_l N exvoY
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Outline

A FM olun  vonde

© The Rank-Deficient LS Problem

C.-L. Liu (NTU) STEM: Least Squares Problems May 28, 2024 17



The Rank-Deficient LS Problem

Motivation >
o (The normal equation of LS problems) If{A has full column rank then there is an

unique LS solution x5 and

AHAXLS = AHb (27)
o What if A is rank-deficient? Namely, A € C**¥ and
N\o > L, Y"‘A“’\H HA&'L@NZ
rank(A) =r < N. e € - (28)
o Logical reasoning:
p—q = ~gop (29)
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Example 1

o We consider the following equations

~——
A =~~~ bx |
XL x)0
e The associated LS problem is cast as o ﬂfvw'w\ =
1
min || Ax — b], (31)
xeCN —=/

Observations

o There are infinitely many solutions to (30).

o If x* is a solution to (30), then [[Ax* — b, = 0.
o The LS problem (31) has an infinite number of solutions.

C-L. Liu (NTU) Squ: May 28, 2024 19




The Minimum 2-Norm Solution

o We define the objective function

Y(x) £ [|Ax — bl|,.

The minimum of 1 (x) is denoted by ¥yiy.

The set of all minimizers

X & {xeC" | Y(x) = Yuin}- (33)

The set X is convex [GVL2013, Section 5.5.1].

Among the vectors in X', we select the unique element with
A .

arg min ||x 34

Cagft argminilxl, (34)

C-L. Liu (NTU) STEM:
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The Rank-Deficient LS Problem

The Rank-Deficient LS Solution with the Minimum 2-Norm

Theorem (Revised from Theorem 5.5.1 in [GVL2013])

Let the SVD of A be A = UXV" € CM*N with rank(A) = :) The singular vectors
satisfy S~ Sr>0
Ué[ul Uy ooo uM], Vé[vl Vg coo VN]. (35)

Assume that b € CM. Then

XLS_% - & (36)
A2 3T s

minimizes@ and has the sma/lest = norm of all minim

C-L. Liu (NTU) May 28, 2024 21




T RenkcDeficent LS Problem
The LS Solution in Example 1

o We consider the matrix A = [1 2] in (30).
e The rank of A is 1.
o The SVD of A

1/v5 —2//5
u =1, 01:\/5, V{={2/\/g, V2:|:1/\/5 . (_:E_Z)

T I2x2 :© . (38)
|

l+d“O

~ ~

e The set of minimizers veal /‘ww"éY
/

r={ ] @
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. X, xe C
The LS Solution in Example 1 |

o The rank-deficient LS solution with the minimum 2-norm

xis 2 argmin [x], = arg min /|y [* + oo (39)
xeX

o We decompose the elements x; and x5 into the real and imaginary parts:

v = Refa1} + jlmiaa), (40)
zy = Re{zy} + jlm{zs}. (41)
O

o The LS solution x15

Xis 2 arMQ + (Igﬁgl D? + (Re {m})” + (Imfr5})*  (42a)

subject to Re{z1} + 2Re{x2} = 1, (42b)
ey + sheray = 1

Im{z7} + 2Im{as} = 0. (42c)
May 28, 2024 23




The Rank-Deficient LS Problem

[[lustration of the LS Solution

0.8 -\
0.6} Yrme (36)
04| S
0.2} i=!
0f (r
0.2} b=1,
-0.4|
06/ 71 = V5.
ogb— v = {1/ 5 v, — {—2/ 5]
-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 2/v/5]|’ 1/v/5

gRe{acl} ]
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Pseudo-inverse Using the SVD &1~ & =0
o Let A = UXVH" € CM*V where rank(A) :@g min{M, N} (c.f. page 21).

o We defirm a matrix =1 (c.f. page 14) v
N ’ oyt 0 ... 0 0 ... 0]
S =
E;}/\ < O e ... 0 O ... O
< 0 ; 5 : P W, o
21 0 0 ...0'0..0 e CchxM_ (43)
(\\ 0 0 0 0 0
0 0 ... 0 0 ..0,
e The pseudo-inverse of A is defined as
\
AT £ vxyiyH € CN*M, (44)
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Example of the Pseudo-Inverse ANV; [ l 2l /e
o We consider the matrix A = [1 2] in (30). - %g
o The rank of A is 1. (

o The SVD of A -

I ]

e The pseudo-inverse of A \:/’ Z'k L—) H A_k [1 J

Y/g L z]

7
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Properties of the Pseudo-Inverse (1/5

o
\ >
A
X
\Q
L

o Let A € CM*N

o Let AT be the pseudo-inverse of A
o Let be CM.

° Theﬁw satisfies

Y\
va
3

S
\3>
v
'S
=

XLs = ATb (47)

Remarks
o Comparison: (25) and (36).
o Initially, we aim to solve Ax =b. ~ - /_\‘I b
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The Pseudo-Inverse of a Matrix

Properties of the Pseudo-Inverse (2/5)

o If rank(A) = N, then ()
£ M colimn 1
\{awlc AT = (AHA)_ AH.

ol

o lf M =N —Frank . then

e[ ) el
A~

1

C.-L. Liu (NTU) STEM: Least Squares Problems
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Properties of the Pseudo-Inverse (3/5) .ZS R Ty
o The pseudo-inverse Af satisfies@f_o%_dwm [\ %
Tneense A (o) A@A — A, N ’;, 1 | (52)

L E\{_\—l - 3__:»\ L\g‘g#; ATAAT = AT, o (53)

—-\"——’/—/

-

(AAN)" = AAT, (54)

AA=T

(ATA)" = ATA. (55)

o (Exercise) Prove the four Moore-Penrose conditions.
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Properties of the Pseudo-Inverse (4/5)

o The matrix AAT can be expressed as
AAT = Z u;u,
i=1

where u, uy, ..., u, are the left singular vectors of A.

o The matrix ATA can be expressed as

ATA = ivivf,
i=1

where v, v,, ..., Vv, are the right singular vectors of A.

C.-L. Liu (NTU) STEM: Least Squares Problems
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Properties of the Pseudo-Inverse (5/5)

o The size of the minimum residual satisfies

o= |~ AAT) b .

+ T
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Outline

Problem Formulation

The Full-Rank LS Problem

The Rank-Deficient LS Problem
The Pseudo-Inverse of a Matrix

© Concluding Remarks
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Concluding Remarks

Concluding Remarks
o Thé LS problem

in |[Ax —b
min [|Ax = b,

o Normal equations
o Rank-deficient LS 7
o Pseudo inverse A'k

—

o Extensions =

o Weighted least squares (WLS) @ F\@
o Total least squares (TLS) o

o Constrained least squares (CLS)

o Recursive least squares (RLS)
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