Outline

- Motivations
- 2 Jordan Canonical Form
 - Definition and Examples
 - The Integer Power of a Matrix
- Singular Value Decomposition (SVD)
 - Definition and Properties
 - Matrix Norms and SVD
- 4 Principal Component Analysis (PCA)

The Data Vectors

Consider a set of data vectors (row vectors)

$$\mathbf{x}_{m} = \begin{bmatrix} x_{m,1} & x_{m,2} & x_{m,3} & \dots & x_{m,N} \end{bmatrix}_{i \times N}$$
(87)

for
$$m=1,2,\ldots M$$
.

- The number of data vectors: \widehat{M}
- ullet The length of a data vector: \underline{N}
- Usually $M \gg N$.
- Applications
 - Audio signals
 - Images
 - Communication signals
 - Array signal processing (linear arrays or planar arrays)

Mean Subtraction

• The mean vector $\overline{\mathbf{x}}$ (as a row vector) is

$$\frac{X_{1}}{X_{2}} = 0$$

$$\frac{X_{2}}{X_{3}} = 0$$

$$\frac{X_{4}}{X_{5}} = 0$$

$$\frac{X_{1}}{X_{2}} = 0$$

$$\frac{X_{1}}{X_{2}} = 0$$

$$\frac{X_{2}}{X_{3}} = 0$$

$$\frac{X_{1}}{X_{2}} = 0$$

$$\frac{X_{2}}{X_{3}} = 0$$

$$\frac{X_{3}}{X_{4}} = 0$$

$$\frac{X_{4}}{X_{5}} = 0$$

$$\frac{X_{4}}{X_{5}} = 0$$

$$\frac{X_{4}}{X_{5}} = 0$$

$$\frac{X_{4}}{X_{5}} = 0$$

$$\frac{X_{5}}{X_{5}} = 0$$

ullet The new data vector ${f a}_m$ after subtracting the mean vector from ${f x}_m$

$$\mathbf{a}_m \triangleq \mathbf{x}_m - \overline{\mathbf{x}}.$$
 M= $1 \sim M$ (89)

The Data Matrix

• The data matrix $A \in \mathbb{C}^{N \times N}$

• The data matrix
$$(A) \in \mathbb{C}^{M \times N}$$
 $A \triangleq \begin{bmatrix} \overline{a_1} & \overline{x_1} - \overline{x} \\ \overline{a_2} & \overline{x_2} - \overline{x} \\ \vdots & \overline{x_M} - \overline{x} \end{bmatrix}$.
• The data vector \mathbf{x}_m can be expressed as $\mathbf{x}_m = \mathbf{e}_m^\mathsf{T} (A) + \overline{\mathbf{x}}$, where $\mathbf{e}_m \in \mathbb{C}^M$ satisfies

$$\widehat{m} = \mathbf{e}_{m}^{\mathsf{T}} \widehat{\mathbf{A}} + \overline{\mathbf{x}},$$

where $\mathbf{e}_m \in \mathbb{C}^M$ satisfies

$$[\mathbf{e}_m]_i = egin{cases} 1 & \text{if } i = m, \\ 0 & \text{if } i
eq m. \end{cases} \quad \ \ \, \stackrel{\text{Cm}^2}{\underset{0}{\overset{\circ}{\downarrow}}} \ \, \stackrel{\overset{\circ}{\downarrow}}{\underset{0}{\overset{\circ}{\downarrow}}} \ \, \stackrel{\text{wth}}{\underset{0}{\overset{\circ}{\downarrow}}} \ \, \stackrel{\text{Cm}^2}{\underset{0}{\overset{\circ}{\downarrow}}} \ \, \stackrel{\text{Cm}^2}{\underset{0}{\overset{\sim}{\downarrow}}} \ \, \stackrel{\text{Cm}^2}{\underset{0$$

$$= \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} \in \mathbb{R}^{th}$$
 (92)

$$\underline{A} = \begin{bmatrix} \underline{a}_1 \\ \vdots \\ \underline{a}_M \end{bmatrix}$$

SVD of A

According to Page 37, the <u>SVD</u> of A is

$$\underbrace{\mathbf{A}} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{H}} \qquad (\underline{93})$$

$$\Rightarrow = \sum_{i=1}^{N} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\mathsf{H}} \qquad (\underline{94})$$

$$= \underbrace{\sigma_{1}} \mathbf{u}_{1} \mathbf{v}_{1}^{\mathsf{H}} + \underbrace{\sigma_{2}} \mathbf{u}_{2} \mathbf{v}_{2}^{\mathsf{H}} + \underbrace{\sigma_{3}} \mathbf{u}_{3} \mathbf{v}_{3}^{\mathsf{H}} + \cdots + \underbrace{\sigma_{N}} \mathbf{u}_{N} \mathbf{v}_{N}^{\mathsf{H}}.$$

$$(95)$$

The singular values satisfy

$$\sigma_1 \ge \sigma_2 \ge \sigma_3 \ge \dots \ge \sigma_N \ge 0.$$
 (96)

• The *i*th component of A is $\sigma_i \mathbf{u}_i \mathbf{v}_i^{\mathsf{H}}$.

Dimensionality Reduction (1/2)

• We approximate the matrix A by L components:

$$\widehat{\widehat{\mathbf{A}}} \triangleq \sum_{i=1}^{L} \underline{\sigma_i \mathbf{u}_i \mathbf{v}_i^\mathsf{H}}$$

 $= \sigma_1 \mathbf{u}_1 \mathbf{v}_1^{\mathsf{H}} + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^{\mathsf{H}} + \sigma_3 \mathbf{u}_3 \mathbf{v}_3^{\mathsf{H}} + \dots + \sigma_L \mathbf{u}_L \mathbf{v}_L^{\mathsf{H}}. \tag{98}$

• Dimensional reduction: $L \leq N$.

Dimensionality Reduction (2/2)

According to (91) and (97), we define the approximated data vectors

$$\widehat{\mathbf{x}}_{m} \triangleq \mathbf{e}_{m}^{\mathsf{T}} \widehat{\mathbf{A}} + \overline{\mathbf{x}} = \left(\sum_{i=1}^{L} \sigma_{i} \left(\mathbf{e}_{m}^{\mathsf{T}} \mathbf{u}_{i} \right) \mathbf{v}_{i}^{\mathsf{H}} \right) + \left(\overline{\mathbf{x}} \right)$$

$$(99)$$

- $\mathbf{e}_{m}^{\mathsf{T}} \mathbf{u}_{i}$ is the mth entry of \mathbf{u}_{i} $\sigma_{i} \left(\mathbf{e}_{m}^{\mathsf{T}} \mathbf{u}_{i} \right)$ is the combination coefficient.
- The set $\{\mathbf{v}_1^{\mathsf{H}}, \mathbf{v}_2^{\mathsf{H}}, \dots, \mathbf{v}_L^{\mathsf{H}}\}$ contains the axes.
- A general form of the approximated data vectors is

$$\left(\sum_{i=1}^{L} c_{i} \mathbf{v}_{i}^{\mathsf{H}}\right) + \overline{\mathbf{x}}_{i} \tag{100}$$

where $\underline{c_i} \in \mathbb{C}$ for $i = 1, 2, \dots L$.

An Example of the PCA (1/4)

Problem

Use the $\underline{\mathsf{PCA}}$ with $\underline{L=1}$ to find a regression line that approximates the points in $\boxed{\mathbb{R}^2}$

$$\mathbf{x}_1 = \begin{bmatrix} 7 & 8 \end{bmatrix}, \quad \mathbf{x}_2 = \begin{bmatrix} 9 & 8 \end{bmatrix}, \quad \mathbf{x}_3 = \begin{bmatrix} 10 & 10 \end{bmatrix}, \quad \mathbf{x}_4 = \begin{bmatrix} 11 & 12 \end{bmatrix}, \quad \mathbf{x}_5 = \begin{bmatrix} 13 & 12 \end{bmatrix}.$$

We assume that the combination coefficients are real numbers.

- (Solution) The number of data M=5.
- The length of the data vector N=2.
- The mean vector

An Example of the PCA (2/4)

The new data vectors

$$\mathbf{a}_1 = \begin{bmatrix} -3 & -2 \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} -1 & -2 \end{bmatrix}, \quad \mathbf{a}_3 = \begin{bmatrix} 0 & 0 \end{bmatrix}, \quad \mathbf{a}_4 = \begin{bmatrix} 1 & 2 \end{bmatrix}, \quad \mathbf{a}_5 = \begin{bmatrix} 3 & 2 \end{bmatrix}.$$

The data matrix A and its SVD

$$\mathbf{A} = \begin{bmatrix} -3 & -2 \\ -1 & -2 \\ 0 & 0 \\ 1 & 2 \\ 3 & 2 \end{bmatrix} \underbrace{\mathbf{a}_{1}}_{\mathbf{a}_{2}} \tag{101}$$

An Example of the PCA (3/4)

ullet The SVD of $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^\mathsf{H}$, where

$$\mathbf{V} = \begin{bmatrix} 0.7497 & -0.6618 \\ 0.6618 & 0.7497 \\ \end{bmatrix}.$$

An Example of the PCA (4/4)

• For L=1 in (97), we obtain

$$\widehat{\mathbf{A}} = \underbrace{(5.8416)}_{\sigma_{1}} \underbrace{\begin{bmatrix} -0.6116 \\ -0.3549 \\ 0 \\ 0.3549 \\ 0.6116 \end{bmatrix}}_{\mathbf{u}_{1}} \underbrace{\begin{bmatrix} 0.7497 & -0.6618 \end{bmatrix}}_{\mathbf{v}_{1}^{\text{H}}}.$$

According to (100) and page 61, an approximation of the data points is

$$[10 \ 10] + 0[0.7497 \ -0.6618], \Rightarrow [\times]_{1} = 10 + 0.7497$$

$$[\times]_{2} = 10 - 0.6618$$

64

Selected Topics in Engineering Mathematics: <u>Least Squares Problems</u>

LS

Chun-Lin Liu (劉俊麟)

Department of Electrical Engineering
Graduate Institute of Communication Engineering
National Taiwan University

May 28, 2024

Reference

- R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed., New York: Cambridge University Press, 2013.
 [HJ2013]
- Q. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., Baltimore: The Johns Hopkins University Press, 2013.
 [GVL2013]
- J.-J. Ding. (2023). Selected Topics in Engineering Mathematics [PowerPoint slides].

Outline

- Problem Formulation
- LS
- 2 The Full-Rank LS Problem
- 3 The Rank-Deficient LS Problem
- 4 The Pseudo-Inverse of a Matrix
- Concluding Remarks

Motivation

ullet Find a vector $\mathbf{x} \in \mathbb{C}^N$ such that

 $\mathbf{A}\mathbf{x} = \mathbf{b}$.

- The data matrix $\mathbf{A} \in \mathbb{C}^{M \times N}$ is given.
- The observation vector $\mathbf{b} \in \mathbb{C}^M$ is given.

M<N

• The number of equations is M.

M=N1

- The number of unknowns is N,
- <u>Underdetermined</u> systems: $M < N \leftarrow \square$

M > N

• Overdetermined systems: M > N

Questions

How many solutions to (1)?

Examples of (1)

$$\begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} x' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

Underdetermined Systems

$$\underbrace{\begin{bmatrix} 1 & 2 \end{bmatrix}}_{\mathbf{A}_{|\mathsf{x}_2}} \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{\mathbf{x}_{2\mathsf{x}} \mathsf{l}} = \underbrace{\begin{bmatrix} 0 \end{bmatrix}}_{\mathbf{b}_{\mathsf{l} \mathsf{x}} \mathsf{l}}. \tag{2}$$

The solutions to (2) are

s to (2) are
$$\mathbf{x} = \begin{bmatrix} -2c \\ c \end{bmatrix}, \quad \text{many}$$
 solution

where $c \in \mathbb{C}$.

Overdetermined Systems

$$\underbrace{\begin{bmatrix} 1\\3 \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} x_1 \end{bmatrix}}_{\mathbf{x}_{1 \times 1}} = \underbrace{\begin{bmatrix} 3\\2 \end{bmatrix}}_{\mathbf{b}_{2 \times 1}}.$$
(3)

There are no solutions to (3).

Usually, an overdetermine system has no exact solution.

The Least Squares Problem (1/2)

• We aim to find $\underline{\underline{a}}$ solution such that $\underline{\underline{x}} = ?$

• The vector p-norm measures the proximity of Ax to b.

$$\|\underline{\mathbf{A}\mathbf{x}-\mathbf{b}}\|_p\,,\ \in |\mathsf{C}|$$

where $p \in [1, \infty)$.

$$P=?$$

$$\begin{cases} 1 \\ 2 \\ \infty \end{cases}$$

(5)

The Least Squares Problem (2/2)

The Least Squares (LS) Problem
$$(p=2)$$

$$\min_{\mathbf{x} \in \mathbb{C}^N} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \to \ell_2 \text{ norm} \tag{6}$$

- The LS problem (6) is tractable for two reasons
 - 1 The solutions to (6) can be found readily.

 - The ℓ_2 norm is invariant under unitary transformations. Namely,

$$\left\|\mathbf{U}\mathbf{v}\right\|_{2} = \left\|\mathbf{v}\right\|_{2},$$

for a unitary matrix U.

convex function (
11. ||p p E[1, \infty]

Outline

- Problem Formulation
- The Full-Rank LS Problem
- The Rank-Deficient LS Problem
- 4 The Pseudo-Inverse of a Matrix
- Concluding Remarks

The LS Solution(s)

• Le(\mathbf{x}_{LS}) be a solution to the LS problem (6),

Questions

- Does x_{LS} exist?
- ullet How do we find \mathbf{x}_{LS} ?
- Is the LS solution x_{LS} unique?

The Normal Equation

XLS

Normal Equation

If A has full column rank then there is a unique LS solution x_{LS} , and it satisfies

A

$$A^{\mathsf{H}}A\mathbf{x}_{\mathrm{LS}} = A^{\mathsf{H}}b.$$

(9)

- See Section 5.3.1 in [GVL2013] for the complete arguments
- ullet The minimum residual ${f r}_{\rm LS}$

$$A \times \sim b$$

$$\mathbf{r}_{\mathrm{LS}} riangleq \mathbf{b} - \mathbf{A}\mathbf{x}_{\mathrm{LS}}.$$

(10)

ullet The size of ${f r}_{
m LS}$

$$\widehat{\rho_{\rm LS}} \triangleq \|\mathbf{A}\mathbf{x}_{\rm LS} - \mathbf{b}\|_{2}.$$
(11)

Remarks on the Normal Equation

- Assume that $\mathbf{A} \in \mathbb{C}^{M \times N}$ and M > N.
- If A has full column rank, then
 - $\operatorname{rank}(\mathbf{A}) = N$.
 - rank $(\mathbf{A}^{\mathsf{H}}\mathbf{A}) = N$. (full you)
 - A^HA is invertible.

If A has full column rank, then the LS solution can be uniquely found by

$$\mathbf{x}_{\mathrm{LS}} \triangleq \left(\mathbf{A}^{\mathsf{H}}\mathbf{A}\right)^{-1}\mathbf{A}^{\mathsf{H}}\mathbf{b}$$

- Interpretations of \mathbf{x}_{LS}
 - Wiener-Hopf equation in Adaptive Signal Processing
 - Singular values and singular vectors of (A)

The LS Solution and the SVD (1/4)

- We assume that $\frac{\operatorname{rank}(\mathbf{A}) = N}{\operatorname{rank}(\mathbf{A})}$
- The SVD of A is denoted by

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{H}} = \sum_{i=1}^{N} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\mathsf{H}}. \tag{13}$$

ullet The matrix $oldsymbol{\Sigma}$ is

$$\mathbf{\Sigma} = \begin{bmatrix} \mathbf{\Sigma}_{N} \\ \mathbf{0}_{(M-N) \times N} \end{bmatrix}, \quad \mathbf{\Sigma}_{N} = \operatorname{diag}(\sigma_{1}, \sigma_{2}, \dots, \sigma_{N}).$$
 (14)

- The singular values satisfy $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_N > 0$.
- The unitary matrices U and V comprise left and right singular vectors.

$$\mathbf{U} = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_M \end{bmatrix}, \qquad \qquad \mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_N \end{bmatrix}. \tag{15}$$

The LS Solution and the SVD (2/4)

• The unitary matrices U and V satisfy

$$\mathbf{U}^{\mathsf{H}}\mathbf{U} = \mathbf{I}_{(N)} \tag{16}$$

• Substituting (13) into (12) leads to

$$\mathbf{x}_{LS} = \left(\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathsf{H}} \right)^{\mathsf{H}} \left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathsf{H}} \right) \right)^{-1} \left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathsf{H}} \right)^{\mathsf{H}} \mathbf{b}$$
 (17)

$$= (\mathbf{V} \mathbf{\Sigma}^{\mathsf{H}} \mathbf{U}^{\mathsf{H}} \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{H}})^{-1} \mathbf{V} \mathbf{\Sigma}^{\mathsf{H}} \mathbf{U}^{\mathsf{H}} \mathbf{b}$$

$$= \mathbf{V} (\mathbf{\Sigma}^{\mathsf{H}} \mathbf{\Sigma})^{-1} \mathbf{V}^{\mathsf{H}} \mathbf{V}^{\mathsf{H}} \mathbf{b}$$
(18)

$$= \mathbf{V} \left(\mathbf{\Sigma}^{\mathsf{H}} \mathbf{\Sigma} \right)^{-1} \mathbf{V}^{\mathsf{H}} \mathbf{V}^{\mathsf{H}} \mathbf{U}^{\mathsf{H}} \mathbf{b} \tag{19}$$

$$= \mathbf{V} \left(\mathbf{\Sigma}^{\mathsf{H}} \mathbf{\Sigma} \right)^{-1} \mathbf{\Sigma}^{\mathsf{H}} \mathbf{U}^{\mathsf{H}} \mathbf{b} \right) \tag{20}$$

The LS Solution and the SVD (3/4)

 \bullet From (14), the matrix associated with Σ can be expressed as

$$\underbrace{\left(\boldsymbol{\Sigma}^{\mathsf{H}}\boldsymbol{\Sigma}\right)^{-1}\boldsymbol{\Sigma}^{\mathsf{H}}}_{} = \left(\begin{bmatrix}\boldsymbol{\Sigma}_{N}\\\boldsymbol{0}_{(M-N)\times N}\end{bmatrix}^{\mathsf{H}}\begin{bmatrix}\boldsymbol{\Sigma}_{N}\\\boldsymbol{0}_{(M-N)\times N}\end{bmatrix}\right)^{-1}\begin{bmatrix}\boldsymbol{\Sigma}_{N}\\\boldsymbol{0}_{(M-N)\times N}\end{bmatrix}^{\mathsf{H}}$$
(21)

$$= \left(\boldsymbol{\Sigma}_{N}^{\mathsf{H}} \boldsymbol{\Sigma}_{N}\right)^{-1} \begin{bmatrix} \boldsymbol{\Sigma}_{N}^{\mathsf{H}} & \mathbf{0}_{N \times (M-N)} \end{bmatrix}$$
 (22)

$$= \begin{bmatrix} \boldsymbol{\Sigma}_{N}^{-1} & \mathbf{0}_{N \times (M-N)} \end{bmatrix} \tag{23}$$

$$= \begin{bmatrix} \sigma_1^{-1} & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & \sigma_2^{-1} & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_N^{-1} & 0 & \dots & 0 \end{bmatrix}.$$

$$(24)$$

The LS Solution and the SVD (4/4)

• Substituting (24) and (15) into (20) gives

Gram- Schmidt

$$\overline{M} = (X) \overline{\Lambda}^{i} + (X^{r})$$

$$\mathbf{x}_{\mathrm{LS}} = \sum_{i=1}^{\mathbf{U}_{i}^{i}} \mathbf{D}_{\mathbf{v}_{i}}$$

- \mathbf{x}_{LS} is a linear combination of $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_N\}$.
- Two factors influence the combination coefficients
 - **1** The inner product $\langle \mathbf{b}, \mathbf{u}_i \rangle \triangleq \mathbf{u}_i^\mathsf{H} \mathbf{b}$
 - The singular value σ_i

(25)

$$\langle \overline{M}, \overline{\Lambda} \rangle$$

$$M \simeq \frac{\langle \overline{\Lambda}^1 \overline{\lambda}^1 \rangle}{\langle \overline{M}^1 \overline{\Lambda}^1 \rangle} \overline{\Lambda}^1 +$$

$$X = \frac{\langle Y | Y \rangle}{\langle Y | Y \rangle}$$

The Size of the Minimum Residual

• (Exercise) It can be shown that the size of the minimum residual (denoted by $\rho_{\rm LS}$) satisfies

$$\rho_{\rm LS}^2 = \sum_{i=N+1}^{M} |\mathbf{u}_i^{\mathsf{H}} \mathbf{b}|^2. \tag{26}$$

Outline

- Problem Formulation
- 2 The Full-Rank LS Problem

A full column roule

- The Rank-Deficient LS Problem
- 4 The Pseudo-Inverse of a Matrix
- Concluding Remarks

Motivation

• (The normal equation of LS problems) If A has full column rank, then there is an unique LS solution x_{LS} and

$$\mathbf{A}^{\mathsf{H}}\mathbf{A}\mathbf{x}_{\mathrm{LS}} = \mathbf{A}^{\mathsf{H}}\mathbf{b}.\tag{27}$$

• What if $\underline{\mathbf{A}}$ is rank-deficient? Namely, $\mathbf{A} \in \mathbb{C}^{M \times N}$, and $\operatorname{rank}(\mathbf{A}) = r < N$.

Logical reasoning:

$$p \to q \equiv \sim q \to \sim p$$
 (29)

Example 1

We consider the following equations

$$\underbrace{\begin{bmatrix} 1 & 2 \end{bmatrix}}_{\mathbf{A}_{|\mathsf{X}|\mathsf{X}}} \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{\mathbf{X}_{\mathsf{2}|\mathsf{X}|\mathsf{X}}} = \underbrace{\begin{bmatrix} 1 \end{bmatrix}}_{\mathbf{b}_{|\mathsf{X}|\mathsf{X}}}.$$

• The associated LS problem is cast as

$$\min_{\mathbf{x} \in \mathbb{C}^N} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2$$

(<u>31</u>

Observations

- There are <u>infinitely many solutions</u> to (30).
- If \mathbf{x}^* is a solution to (30), then $\|\mathbf{A}\mathbf{x}^* \mathbf{b}\|_2 = 0$.
- The LS problem (31) has an infinite number of solutions.

The Minimum 2-Norm Solution

• We define the objective function

ted by
$$\underline{\psi_{\min}}$$
.

- The minimum of $\psi(\mathbf{x})$ is denoted by ψ_{\min} .
- The set of all minimizers

$$\mathcal{X} \triangleq \{ \mathbf{x} \in \mathbb{C}^N \mid \underline{\psi(\mathbf{x}) = \psi_{\min}} \}. \tag{33}$$

- The set \mathcal{X} is convex [GVL2013, Section 5.5.1].
- Among the vectors in \mathcal{X} , we select the <u>unique element</u> with the <u>minimum 2-norm</u>:

$$\mathbf{x}_{LS} \triangleq \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{arg \, min}} \, \|\mathbf{x}\|_{2} \tag{34}$$

The Rank-Deficient LS Solution with the Minimum 2-Norm

Theorem (Revised from Theorem 5.5.1 in [GVL2013])

Let the SVD of \mathbf{A} be $\mathbf{\underline{A}} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{H}} \in \mathbb{C}^{M \times N}$ with $\underline{\mathrm{rank}(\mathbf{A})} = \underline{r}$. The singular vectors satisfy

$$\mathbf{U} \triangleq \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_M \end{bmatrix}, \qquad \qquad \mathbf{V} \triangleq \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_N \end{bmatrix}. \tag{35}$$

Assume that $\mathbf{b} \in \mathbb{C}^M$. Then

$$\mathbf{x}_{LS} = \sum_{i=1}^{r} \underbrace{\mathbf{u}_{i}^{\mathsf{H}} \mathbf{b}}_{\sigma_{i}} \mathbf{v}_{i} \qquad \underbrace{\begin{array}{c} = \\ = \\ \end{array}}_{=}^{\mathsf{T}} \underbrace{\begin{array}{c} \mathbf{b} \\ \mathbf{c} \end{array}}_{=} \underbrace{\begin{array}{c} (36) \\ (25) \end{array}}_{=}$$

minimizes $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}$ and has the smallest 2-norm of all minimizers.

The LS Solution in Example 1

- We consider the matrix $A = \begin{bmatrix} 1 & 2 \end{bmatrix}$ in (30).
- The rank of A is 1.
- The SVD of A

$$\mathbf{u}_1 = 1, \qquad \sigma_1 = \sqrt{5}, \qquad \mathbf{v}_1 = \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}, \qquad \mathbf{v}_2 = \begin{bmatrix} -2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix}. \qquad (37)$$

The set of minimizers

$$\mathcal{X} = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{C}^2 \middle| \underline{x_1 + 2x_2} = 1 \right\}. \tag{38}$$

$\chi_1, \chi_2 \in \mathbb{C}$

The LS Solution in Example 1

The rank-deficient LS solution with the minimum 2-norm

$$\mathbf{x}_{LS} \triangleq \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{arg \, min}} \|\mathbf{x}\|_{2} = \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{arg \, min}} \sqrt{|x_{1}|^{2} + |x_{2}|^{2}}$$
(39)

• We decompose the elements x_1 and x_2 into the real and imaginary parts:

$$x_1 = \operatorname{Re}\{x_1\} + j\operatorname{Im}\{x_1\},\tag{40}$$

$$x_2 = \underline{\operatorname{Re}\{x_2\}} + j\underline{\operatorname{Im}\{x_2\}}.\tag{41}$$

The LS solution x_{LS}

$$\mathbf{x}_{LS} \triangleq \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{argmin}} \sqrt{\left(\operatorname{Re}\left\{x_{1}\right\}\right)^{2} + \left(\operatorname{Im}\left\{x_{1}\right\}\right)^{2} + \left(\operatorname{Re}\left\{x_{2}\right\}\right)^{2} + \left(\operatorname{Im}\left\{x_{2}\right\}\right)^{2}}$$
subject to
$$\operatorname{Re}\left\{x_{1}\right\} + 2\operatorname{Re}\left\{x_{2}\right\} = 1,$$

$$(42a)$$

subject to $\frac{\text{Re}\{x_1\} + 2\text{Re}\{x_2\} = 1,}{\text{Im}\{x_1\} + 2\text{Im}\{x_2\} = 0.}$

$$Im\{x_1\} + 2Im\{x_2\} = 0.$$

 $u_1 = 1$,

$$\mathbf{v}_1 = \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix}.$$

Outline

Normal eq. > XLS = (AA) AHb

- The Full-Rank LS Problem
- The Rank-Deficient LS Problem
- The Pseudo-Inverse of a Matrix

- - - - If A-lexists,

Pseudo-inverse Using the SVD

$$G_1 \sim G_Y > 0$$

- Let $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^\mathsf{H} \in \mathbb{C}^{M \times N}$ where $\mathrm{rank}(\mathbf{A}) = r \leq \min\{M, N\}$ (c.f. page 21). We define a matrix $\mathbf{\Sigma}^\dagger$ (c.f. page 14)

$$\sum_{\mathbf{S}} \left\{ \begin{array}{c} \sigma_{1} \\ \sigma_{2} \\ \sigma_{2} \\ \sigma_{3} \\ \sigma_{4} \\ \sigma_{5} \\ \sigma_{6} \\ \sigma_{6} \\ \sigma_{7} \\ \sigma_{1} \\ \sigma_{1} \\ \sigma_{2} \\ \sigma_{2} \\ \sigma_{2} \\ \sigma_{1} \\ \sigma_{2} \\ \sigma_{3} \\ \sigma_{2} \\ \sigma_{1} \\ \sigma_{2} \\ \sigma_{3} \\ \sigma_{1} \\ \sigma_{1} \\ \sigma_{1} \\ \sigma_{2} \\ \sigma_{3} \\ \sigma_{1} \\ \sigma_{1} \\ \sigma_{2} \\ \sigma_{3} \\ \sigma_{1} \\ \sigma_{3} \\ \sigma_{2} \\ \sigma_{3} \\ \sigma_{3} \\ \sigma_{3} \\ \sigma_{4} \\ \sigma_{3} \\ \sigma_{2} \\ \sigma_{3} \\ \sigma_{3} \\ \sigma_{4} \\ \sigma_{3} \\ \sigma_{2} \\ \sigma_{3} \\ \sigma_{3} \\ \sigma_{4} \\ \sigma_{3} \\ \sigma_{3} \\ \sigma_{4} \\ \sigma_{5} \\ \sigma_$$

The pseudo-inverse of A is defined as

$$\mathbf{A}^{\dagger} \triangleq \mathbf{V} \mathbf{\Sigma}^{\dagger} \mathbf{U}^{\mathsf{H}} \qquad \in \mathbb{C}^{N \times M}. \tag{44}$$

Example of the Pseudo-Inverse

AAT = [1 2] [1/5]

- We consider the matrix $A = \begin{bmatrix} 1 & 2 \end{bmatrix}$ in (30).
- The rank of A is 1.
- The SVD of A

$$\mathbf{u}_1 = 1, \qquad \sigma_1 = \sqrt{5}, \qquad \mathbf{v}_1 = \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}, \qquad \mathbf{v}_2 = \begin{bmatrix} -2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix}.$$
 (45)

ullet The pseudo-inverse of ${f A}$

$$\mathbf{f} \mathbf{A} \qquad \underbrace{\mathbf{v}_{1}}_{\mathbf{A}^{\dagger}} = \begin{bmatrix} \mathbf{v}_{1} & \mathbf{v}_{2} \end{bmatrix} \begin{bmatrix} \sigma_{1}^{-1} \\ 0 \end{bmatrix} \begin{bmatrix} \mathbf{u}_{1} \end{bmatrix}^{\mathsf{H}} = \begin{bmatrix} 1/5 \\ 2/5 \end{bmatrix}. \quad \underbrace{\mathbf{A}^{\dagger}}_{\mathbf{A}^{\dagger}} = \underbrace{\mathbf{v}_{1}}_{\mathbf{A}^{\dagger}} \underbrace{\mathbf{v}_{2}}_{\mathbf{A}^{\dagger}} \underbrace{\mathbf{v}_{2}}_{\mathbf{A}^{\dagger}} \underbrace{\mathbf{v}_{1}}_{\mathbf{A}^{\dagger}} \underbrace{\mathbf{v}_{2}}_{\mathbf{A}^{\dagger}} \underbrace{\mathbf{v}_{1}}_{\mathbf{A}^{\dagger}} \underbrace{\mathbf{v}_{2}}_{\mathbf{A}^{\dagger}} \underbrace{\mathbf{v}_{1}}_{\mathbf{A}^{\dagger}} \underbrace{\mathbf{v}_{2}}_{\mathbf{A}^{\dagger}} \underbrace{\mathbf{v}_{1}}_{\mathbf{A}^{\dagger}} \underbrace{\mathbf{v}_{1}}_{\mathbf{A}^{\dagger}} \underbrace{\mathbf{v}_{2}}_{\mathbf{A}^{\dagger}} \underbrace{\mathbf{v}_{1}}_{\mathbf{A}^{\dagger}} \underbrace{\mathbf{v}_{1}}_{\mathbf$$

Properties of the Pseudo-Inverse (1/5

- Let $\mathbf{A} \in \mathbb{C}^{M \times N}$
- Let A^{\dagger} be the pseudo-inverse of A
- Let $\mathbf{b} \in \mathbb{C}^M$.
- \bullet The LS solution \mathbf{x}_{LS} satisfies

$$(1/5) \qquad \left[Ax \approx b \right]$$

$$LS = \min \|Ax - b\|_{2}$$

- Remarks
 - Comparison: (25) and (36).
 - Initially, we aim to solve $\mathbf{A}\mathbf{x} = \mathbf{b}$. \Rightarrow $\times =$

 $\mathbf{x}_{\mathrm{LS}} = \mathbf{A}^{\dagger} \mathbf{b}.$

(47)

Properties of the Pseudo-Inverse (2/5)

• If
$$rank(\mathbf{A}) = N$$
, then full column yawlo

• If $M = N = \operatorname{rank}(\mathbf{A})$, then

$$\mathbf{A}^\dagger = \left(\mathbf{A}^\mathsf{H}\mathbf{A}
ight)^{-1}\mathbf{A}^\mathsf{H}.$$

$$\mathbf{A}^{\dagger} = (\mathbf{A}^{\mathsf{H}} \mathbf{A})^{-1} \mathbf{A}^{\mathsf{H}}$$

$$= \mathbf{A}^{-1} (\mathbf{A}^{\mathsf{H}})^{-1} \mathbf{A}^{\mathsf{H}}$$
(49)

$$=\mathbf{A}^{-1}\left(\mathbf{A}^{\mathsf{H}}\right)^{-1}\mathbf{A}^{\mathsf{H}}\tag{50}$$

$$= \mathbf{A}^{-1}. \tag{51}$$

(48)

Properties of the Pseudo-Inverse (3/5)

ullet The pseudo-inverse ${f A}^{\dagger}$ satisfies the four Moore-Penrose conditions:

Inverse
$$A^{\dagger}$$
 (extrs)
$$AA^{\dagger}A = A, \qquad AA^{\dagger} \stackrel{?}{\neq} I \qquad (52)$$

$$\underline{\underline{A}}^{\dagger} \underline{\hat{A}} = \underline{\underline{I}}$$
 (54)

$$\left(\mathbf{A}^{\dagger}\mathbf{A}\right)^{\mathsf{H}} = \mathbf{A}^{\dagger}\mathbf{A}.\tag{55}$$

• (Exercise) Prove the four Moore-Penrose conditions.

Properties of the Pseudo-Inverse (4/5)

• The matrix AA[†] can be expressed as

$$\mathbf{A}\mathbf{A}^{\dagger} = \sum_{i=1}^{r} \mathbf{u}_{i} \mathbf{u}_{i}^{\mathsf{H}},\tag{56}$$

where $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r$ are the left singular vectors of \mathbf{A} .

• The matrix $A^{\dagger}A$ can be expressed as

$$\mathbf{A}^{\dagger}\mathbf{A} = \sum_{i=1}^{r} \mathbf{v}_{i} \mathbf{v}_{i}^{\mathsf{H}},\tag{57}$$

where $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ are the right singular vectors of \mathbf{A} .

Properties of the Pseudo-Inverse (5/5)

• The size of the minimum residual satisfies

$$\rho_{\rm LS} = \left\| \left(\mathbf{I} - \mathbf{A} \mathbf{A}^{\dagger} \right) \mathbf{b} \right\|_{2}. \tag{58}$$

Outline

- Problem Formulation
- 2 The Full-Rank LS Problem
- The Rank-Deficient LS Problem
- 4 The Pseudo-Inverse of a Matrix
- Concluding Remarks

Concluding Remarks

The LS problem

$$\min_{\mathbf{x} \in \mathbb{C}^N} \left\| \mathbf{A} \mathbf{x} - \mathbf{b} \right\|_2$$

- Normal equations
- <u>Full-rank</u> LS ^Δ
- Rank-deficient LS /
- Pseudo inverse

- Extensions
 - Weighted least squares (WLS)
 - Total least squares (TLS)
 - Constrained least squares (CLS)
 - Recursive least squares (RLS)

