Selected Topics in Engineering Mathematics Homework Assignment \#5

 (Due: June 18th)

 (Due: June 18th)}

Problems

1. (10 points) The matrix \mathbf{A} is

$$
\mathbf{A}=\left[\begin{array}{ccc}
4 & 0 & 0 \tag{1}\\
62 / 25 & 38 / 25 & 9 / 25 \\
16 / 25 & -16 / 25 & 62 / 25
\end{array}\right]
$$

Find the Jordan canonical form \mathcal{J} of the matrix \mathbf{A}. The diagonal elements of \mathcal{J} are sorted in the descending order:

$$
\begin{equation*}
[\mathcal{J}]_{1,1} \geq[\mathcal{J}]_{2,2} \geq[\mathcal{J}]_{3,3} \tag{2}
\end{equation*}
$$

2. (10 points) Let $\mathbf{X} \in \mathbb{C}^{2 \times 2}$. Solve the system of equations

$$
\left[\begin{array}{ll}
1 & 2 \tag{3}\\
3 & 4
\end{array}\right] \mathbf{X}\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right]+\mathbf{X}=\left[\begin{array}{cc}
0 & 8 \\
-1 & 22
\end{array}\right]
$$

for the matrix \mathbf{X}.
Hint: Take the vectorization operator $\operatorname{vec}(\cdot)$ on both sides of (3).
3. (10 points) The matrix \mathbf{B} is defined as

$$
\mathbf{B}=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \tag{4}\\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 2
\end{array}\right]
$$

Find the matrix power \mathbf{B}^{10}.
4. (20 points) Let $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathbf{H}}$ be the SVD of the matrix \mathbf{A}. We assume that $[\mathbf{U}]_{1, n}>0$ for all n. Determine the matrices $\mathbf{U}, \boldsymbol{\Sigma}$, and \mathbf{V} for the following matrices:
(a) (10 points)

$$
\mathbf{A}=\left[\begin{array}{cc}
1 & 1 \tag{5}\\
1 & -1 \\
0 & 1
\end{array}\right]
$$

(b) (10 points)

$$
\mathbf{A}=\left[\begin{array}{l}
1 \tag{6}\\
\jmath
\end{array}\right]
$$

where $\jmath=\sqrt{-1}$.
5. (10 points) We consider the matrix \mathbf{M} as follows:

$$
\mathbf{M}=\left[\begin{array}{ccc}
2 & 1 & 0 \tag{7}\\
-1 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
3 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] .
$$

Determine the matrix p-norms

$$
\begin{equation*}
\|\mathbf{M}\|_{1}, \quad\|\mathbf{M}\|_{2}, \quad\|\mathbf{M}\|_{\infty} \tag{8}
\end{equation*}
$$

and the nuclear norm

$$
\begin{equation*}
\|\mathbf{M}\|_{*} . \tag{9}
\end{equation*}
$$

6. (10 points) Let the data vectors be

$$
\mathbf{x}_{m} \triangleq\left[\begin{array}{ll}
m & \sin \left(\frac{m \pi}{4 M}\right) \tag{10}
\end{array}\right],
$$

where $m=1,2, \ldots, M$. We suppose that $M=20$. We can derive a regression line in \mathbb{R}^{2} based on (10) and the PCA with $L=1$. Use MATLAB or Python to plot these data vectors and the this regression line. The code should be handed out by NTUCool.
Hint: The horizontal axis is $[\mathrm{x}]_{1}$ and the vertical axis is $[\mathrm{x}]_{2}$.
7. (10 points) Let $\mathbf{x} \in \mathbb{C}^{2}$. We consider the system of equations

$$
\left[\begin{array}{ll}
1 & 0 \tag{11}\\
\jmath & \jmath \\
0 & 2
\end{array}\right] \mathrm{x}=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right],
$$

where $\jmath=\sqrt{-1}$. Determine the LS solution x_{LS} to (11).
8. (10 points) The matrix \mathbf{A} is defined as

$$
\mathbf{A} \triangleq\left[\begin{array}{ll}
1 & 0 \tag{12}\\
0 & 5
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right] .
$$

Determine the pseudo-inverse of \mathbf{A}.
9. (10 points) Find the optimal solution to the optimization problem

where $\jmath=\sqrt{-1}$.

