丁建均 Jian-Jiun Ding
實驗室: 研究領域: Digital Signal Processing including Fractional Fourier Transform Digital Filter Design Time-Frequency Analysis Wavelet transform Nonlinear and Time Variant System Analysis Digital Image Processing Integer Transform and Fast Algorithm Number Theory Bioinformatics Quaternion 授課: 聯絡方式: 電話: (02)-33669652 辦公室:明達館 723室 電子郵件: djj@cc.ee.ntu.edu.tw , djj1@ms63.hinet.net
個人網站: https://djj.ee.ntu.edu.tw
著作: (A)
Journal Papers [1] S. C. Pei
and J. J. Ding, “Closed form discrete fractional and affine Fourier
transforms,” IEEE Trans. Signal
Processing, vol. 48, no. 5, pp. 1338-1353, May 2000. [2] S. C. Pei
and J. J. Ding, “The integer transforms analogous to discrete trigonometric
transforms,” IEEE Trans. Signal
Processing, vol. 48, no. 12, pp. 3345-3364, Dec. 2000. [3] S. C. Pei
and J. J. Ding, “Simplified fractional Fourier transforms,” J. Opt. Soc. Am. A, vol. 17, no. 12, pp.
2355-2367, Dec. 2000. [4] S. C. Pei
and J. J. Ding, “Two-dimensional affine generalized fractional Fourier
transform,” IEEE Trans. Signal Processing,
vol. 49, no. 4, pp. 878-897, Apr. 2001.
[5] S. C. Pei
and J. J. Ding, “Relations between the fractional operations and the Wigner
distribution, ambiguity function,” IEEE
Trans. Signal Processing, vol. 49, no. 8, pp. 1638-1655, Aug. 2001. [6] S. C.
Pei, J. J. Ding, and J. H. Chang, “Efficient implementation of quaternion Fourier transform, convolution,
and correlation by 2-D complex FFT,” IEEE
Trans. Signal Processing, vol. 49, no. 11, pp. 2783-2797, Nov. 2001. [7] S. C. Pei
and J. J. Ding, “Fractional, canonical, and simplified fractional cosine, sine
and Hartley transforms,” IEEE Trans.
Signal Processing, vol. 50, no. 7, pp. 1661-1680, Jul. 2002. [8] S. C. Pei
and J. J. Ding, “Eigenfunctions of linear canonical transform,” IEEE Trans. Signal Processing, vol. 50,
no. 1, pp. 11-26, Jan. 2002. [9] S. C. Pei
and J. J. Ding, “Eigenfunctions of the offset Fourier, fractional Fourier, and
linear canonical transforms,” J. Opt.
Soc. Am. A, vol. 20, no. 3, pp. 522-532, March 2003. [10] S. C.
Pei, J. H. Chang, and J. J. Ding, “Commutative reduced biquaternions and their
Fourier transform for signal and image processing,” IEEE Trans. Signal Processing, vol. 52, no. 7, pp. 2012-2031, July
2004. [11] S. C.
Pei and J. J. Ding, “Generalized eigenvectors and fractionalization of offset DFTs
and DCTs,” IEEE
Trans. Signal Processing, vol. 52, no. 7, pp. 2032-2046, July 2004. [12] S. C.
Pei and J. J. Ding, “Generalized prolate spheroidal
wave functions for optical finite fractional Fourier and linear canonical transforms,”
J. Opt. Soc. Am. A, vol. 22,
no. 3, pp. 460-474, March 2005. [13] S. C.
Pei, W. L. Hsue, and J. J. Ding, “Discrete
fractional Fourier transform based on new nearly tridiagonal commuting
matrices,” IEEE Trans. Signal
Processing, vol. 54, no. 10, pp. 3815-3828, Oct. 2006. [14] S. C.
Pei and J. J. Ding, “Relations between Gabor transforms and fractional Fourier
transforms and their applications for signal processing,” accepted by IEEE Trans. Signal Processing. [15] S. C.
Pei and J. J. Ding, “Reversible integer color transform,” IEEE Trans. Image Processing, vol. 16, no. 6, pp. 1686-1690, June
2007. [16] S. C.
Pei and J. J. Ding, “Eigenfunctions of
Fourier and fractional Fourier transforms with complex offsets and parameters,”
IEEE Trans. Circuits Syst. I, vol. 54, no. 7, pp. 1599-1611, July
2007. (B) Conference Papers [1] S. C.
Pei, C. C. Tseng, M. H. Yeh, and J, J, Ding, "A new definition of
continuous fractional Hartley transform'', 1998 IEEE Int'l Conference on
Acoust. Speech, Signal Processing. [2] J. J.
Ding and S. C. Pei, “2-D affine generalized fractional Fourier transform,” ICASSP’99, vol. 6, pp. 3181-3184, 1999. [3] J. J.
Ding and S. C. Pei, “Integer Fourier transform,” 一九九九民生電子研討會: 數位視訊及多媒體通訊, Oct. 1999.
[4] S. C. Pei
and J. J. Ding, “Integer discrete Fourier transform and its extension to
integer trigonometric transforms,” ICASSP’00, vol. 5, pp. 513-516, 2000. [5] S. C. Pei
and J. J. Ding, “Eigenfunctions of the canonical transform and the self-imaging
problems in optical system,” ICASSP’00,
vol. 1, pp. 73-76, 2000. [6] S. C. Pei,
J. J. Ding, and J. H. Chang, “Color pattern recognition by quaternion
correlation,” ICIP 2001, vol.
1, pp. 894-897, 2001. [7] S. C. Pei
and J. J. Ding, “Fractional, canonical, and simplified fractional cosine
transforms,” ICASSP’01, vol. 6, pp. 3545-3548,
2001. [8] S. C. Pei
and J. J. Ding, “Saving the bandwidth in the fractional domain by generalized
Hilbert transform pair relation,” ISCAS
2003, vol. 4, pp. 89-92, May 2003.
[9]
S. C. Pei and J. J. Ding, “The generalized radial Hilbert transform and its
applications to 2-D edge detection (any direction or specified directions),” ICASSP 2003, vol. 3, pp. 357-360, Apr. 2003. [10]
S. C. Pei, C. L. Wu, and J. J. Ding, “Simplified structures for two-dimensional
adaptive notch filters,” ISCAS 2003,
vol. 4, pp. 416-419, May 2003. [11]
S. C. Pei, J. H. Chang, and J. J. Ding, “Quaternion matrix singular value
decomposition and its applications for color image processing,” International Conference on Image Processing
2003, vol. 1, pp. 805-808, Sep. 2003.
[12] 貝蘇章, 丁建均, “相位金匙及影像的編碼、轉換、加密解密,” 國防工業訓儲制度九十二年度研發成果發表展, 2003. [13] S. C.
Pei, J. H. Chang, and J. J. Ding, “2D Quaternion Fourier Spectral Analysis and
Its Applications”, ISCAS 2004, May 2004,
vol. 3, pp. 241-244. [14] 貝蘇章, 丁建均, “偏移傅式、分數傅式、線性完整轉換的固有函數”, 國防工業訓儲制度九十二年度研發成果發表展, 2004. [15] J. J.
Ding and S. C. Pei, “Reducing sampling error by prolate spheroidal wave
functions and fractional Fourier transform”, Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., vol. 4, pp.
217-220, 2005. [16] S. C.
Pei, W. L. Hsue, and J. J. Ding, “Discrete
fractional Fourier transform based on new nearly tridiagonal commuting matrices”,
Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., vol. 5, pp. 385-388, 2005. [17] S. C.
Pei and J. J. Ding, “Reversible Integer Color
Transform with Bit-Constraint”, International Conference on Image Processing, vol. 3, pp. 964-967, 2005. [18] S. C.
Pei and J. J. Ding, “New Corner Detection Algorithm by Tangent and Vertical
Axes and Case Table”, International Conference on Image Processing, vol. 1, pp. 365-368, 2005.
[19] J. J.
Ding and S. C. Pei, “Fractional Fourier transforms and Wigner distribution
functions for stationary and non-stationary random process”, vol. 3, pp. 21-24,
ICASSP, May 2006. [20] S. C.
Pei and J. J. Ding, “Improved reversible integer transform”, pp. 1091-1094, ISCAS, May 2006. [21] S. C.
Pei and J. J. Ding, “Relations between Gabor transforms and fractional Fourier
transforms and their applications for signal processing”, accepted by EUSIPCO 2006. [22] Y. C. Zeng, S. C. Pei and J. J. Ding, “DCT-based image protection
using dual-domain bi-watermarking algorithm”, CIP, pp. 2581-2584, Oct. 2006.
[23] Y. C. Zeng, S. C. Pei and J. J. Ding, “Color images enhancement using
weighted histogram separation, ICIP,
pp. 2889-2892, Oct. 2006. [24] S. C.
Pei and J. J. Ding, “Scaled lifting scheme and generalized reversible integer
transform,” ISCAS, pp. 3203-3206, May 2007. [25] S. C.
Pei and J. J. Ding, “Improved Harris’ algorithm for corner and edge
detections,” accepted by ICIP 2007. [26] S. C.
Pei and J. J. Ding, “Discrete-to-discrete
prolate spheroidal wave functions and finite duration discrete fractional Fourier
transform,” accepted by EUSIPCO
2007. [27] S. C.
Pei and J. J. Ding, “Quaternions and biquaternions for symmetric Markov-chain
system analysis,” accepted by EUSIPCO
2007. [28]
J. J. Ding, S. C. Pei, G. C. Guo, J. D. Huang, Y. C.
Lin, Y. S. Zhang, and N. C. Shen, “Images sharing the same amplitude spectrum
but different phase key,” CVGIP,
2007. [29] J. J.
Ding, S. C. Pei, J. D. Huang, G. C. Guo, Y. C. Lin,
N. C. Shen, and Y. S. Zhang, “Short response Hilbert
transform for edge detection,” CVGIP,
2007. (C) Books [1] A. V.
Oppenheim and R. W. Schafer, Discrete-Time Signal Processing (離散時間訊號處理), 2nd Ed., Prentice Hall, New
Jersey, 1999, 曾建誠,陳常侃,王鵬華,丁建均翻譯,全華印行,台北市, 2000. (D) Theses [1] J. J.
Ding, Derivation and Properties of Orthogonal
Transform, Master Thesis, [2] J. J.
Ding, Research of Fractional Fourier Transform
and Linear Canonical Transform, Doctoral Dissertation, Copyright © 2007 DISP
Lab, Graduate Institute of Electrical Engineering, NTU |