丁建均 Jian-Jiun Ding

 

實驗室:

明達531實驗室

 

 研究領域:

Digital Signal Processing

      including Fractional Fourier Transform

                      Digital Filter Design

                      Time-Frequency Analysis

                      Wavelet transform

                      Nonlinear  and Time Variant System Analysis                   

Digital Image Processing

Integer Transform and Fast Algorithm

Number Theory

Bioinformatics

Quaternion

 

授課:

時頻分析與小波轉換

高等數位訊號處理

微分方程

 

聯絡方式:

電話: (02)-33669652

辦公室:明達館 723室 

電子郵件: djj@cc.ee.ntu.edu.tw , djj1@ms63.hinet.net

 

個人網站: https://djj.ee.ntu.edu.tw

 

著作:

(A) Journal Papers

[1] S. C. Pei and J. J. Ding, “Closed form discrete fractional and affine Fourier transforms,” IEEE Trans. Signal Processing, vol. 48, no. 5, pp. 1338-1353, May 2000.    

[2] S. C. Pei and J. J. Ding, “The integer transforms analogous to discrete trigonometric transforms,” IEEE Trans. Signal Processing, vol. 48, no. 12, pp. 3345-3364, Dec. 2000.  

[3] S. C. Pei and J. J. Ding, “Simplified fractional Fourier transforms,” J. Opt. Soc. Am. A, vol. 17, no. 12, pp. 2355-2367, Dec. 2000.     

[4] S. C. Pei and J. J. Ding, “Two-dimensional affine generalized fractional Fourier transform,” IEEE Trans. Signal Processing, vol. 49, no. 4, pp. 878-897, Apr. 2001.  

[5] S. C. Pei and J. J. Ding, “Relations between the fractional operations and the Wigner distribution, ambiguity function,” IEEE Trans. Signal Processing, vol. 49, no. 8, pp. 1638-1655, Aug. 2001.     

[6] S. C. Pei, J. J. Ding, and J. H. Chang, “Efficient implementation of quaternion Fourier transform, convolution, and correlation by 2-D complex FFT,” IEEE Trans. Signal Processing, vol. 49, no. 11, pp. 2783-2797, Nov. 2001.   

[7] S. C. Pei and J. J. Ding, “Fractional, canonical, and simplified fractional cosine, sine and Hartley transforms,” IEEE Trans. Signal Processing, vol. 50, no. 7, pp. 1661-1680, Jul. 2002. 

[8] S. C. Pei and J. J. Ding, “Eigenfunctions of linear canonical transform,” IEEE Trans. Signal Processing, vol. 50, no. 1, pp. 11-26, Jan. 2002.    

[9] S. C. Pei and J. J. Ding, “Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms,” J. Opt. Soc. Am. A, vol. 20, no. 3, pp. 522-532, March 2003.           

[10] S. C. Pei, J. H. Chang, and J. J. Ding, “Commutative reduced biquaternions and their Fourier transform for signal and image processing,” IEEE Trans. Signal Processing, vol. 52, no. 7, pp. 2012-2031, July 2004.     

[11] S. C. Pei and J. J. Ding, “Generalized eigenvectors and fractionalization of offset DFTs and DCTs,” IEEE Trans. Signal Processing, vol. 52, no. 7, pp. 2032-2046, July 2004.   

[12] S. C. Pei and J. J. Ding, “Generalized prolate spheroidal wave functions for optical finite fractional Fourier and linear canonical transforms,” J. Opt. Soc. Am. A, vol. 22, no. 3, pp. 460-474, March 2005.      

[13] S. C. Pei, W. L. Hsue, and J. J. Ding, “Discrete fractional Fourier transform based on new nearly tridiagonal commuting matrices,” IEEE Trans. Signal Processing, vol. 54, no. 10, pp. 3815-3828, Oct. 2006.     

[14] S. C. Pei and J. J. Ding, “Relations between Gabor transforms and fractional Fourier transforms and their applications for signal processing,” accepted by IEEE Trans. Signal Processing.      

[15] S. C. Pei and J. J. Ding, “Reversible integer color transform,” IEEE Trans. Image Processing, vol. 16, no. 6, pp. 1686-1690, June 2007.  

[16] S. C. Pei and J. J. Ding, “Eigenfunctions of Fourier and fractional Fourier transforms with complex offsets and parameters,” IEEE Trans. Circuits Syst. I, vol. 54, no. 7, pp. 1599-1611, July 2007.  

 

(B) Conference Papers

[1] S. C. Pei, C. C. Tseng, M. H. Yeh, and J, J, Ding, "A new definition of continuous fractional Hartley transform'', 1998 IEEE Int'l Conference on Acoust. Speech, Signal Processing. Seattle, USA, pp.1485-1488., May 1998.

[2] J. J. Ding and S. C. Pei, “2-D affine generalized fractional Fourier transform,” ICASSP’99, vol. 6, pp. 3181-3184, 1999.

[3] J. J. Ding and S. C. Pei, “Integer Fourier transform,” 一九九九民生電子研討會: 數位視訊及多媒體通訊, Oct. 1999. 

[4] S. C. Pei and J. J. Ding, “Integer discrete Fourier transform and its extension to integer trigonometric transforms,” ICASSP’00, vol. 5, pp. 513-516, 2000.               

[5] S. C. Pei and J. J. Ding, “Eigenfunctions of the canonical transform and the self-imaging problems in optical system,” ICASSP’00, vol. 1, pp. 73-76, 2000.          

[6] S. C. Pei, J. J. Ding, and J. H. Chang, “Color pattern recognition by quaternion correlation,” ICIP 2001, vol. 1, pp. 894-897, 2001.     

[7] S. C. Pei and J. J. Ding, “Fractional, canonical, and simplified fractional cosine transforms,” ICASSP’01, vol. 6, pp. 3545-3548, 2001.              

[8] S. C. Pei and J. J. Ding, “Saving the bandwidth in the fractional domain by generalized Hilbert transform pair relation,” ISCAS 2003, vol. 4, pp. 89-92, May 2003.         

[9] S. C. Pei and J. J. Ding, “The generalized radial Hilbert transform and its applications to 2-D edge detection (any direction or specified directions),” ICASSP 2003, vol. 3, pp. 357-360, Apr. 2003.            

[10] S. C. Pei, C. L. Wu, and J. J. Ding, “Simplified structures for two-dimensional adaptive notch filters,” ISCAS 2003, vol. 4, pp. 416-419, May 2003.  

[11] S. C. Pei, J. H. Chang, and J. J. Ding, “Quaternion matrix singular value decomposition and its applications for color image processing,” International Conference on Image Processing 2003, vol. 1, pp. 805-808, Sep. 2003.  

[12] 貝蘇章, 丁建均, “相位金匙及影像的編碼、轉換、加密解密,” 國防工業訓儲制度九十二年度研發成果發表展, 2003.   

[13] S. C. Pei, J. H. Chang, and J. J. Ding, “2D Quaternion Fourier Spectral Analysis and Its Applications”, ISCAS 2004, May 2004, vol. 3, pp. 241-244.         

[14] 貝蘇章, 丁建均, “偏移傅式、分數傅式、線性完整轉換的固有函數”, 國防工業訓儲制度九十二年度研發成果發表展, 2004. 

[15] J. J. Ding and S. C. Pei, “Reducing sampling error by prolate spheroidal wave functions and fractional Fourier transform”, Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., vol. 4, pp. 217-220, 2005.  

[16] S. C. Pei, W. L. Hsue, and J. J. Ding, “Discrete fractional Fourier transform based on new nearly tridiagonal commuting matrices”, Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., vol. 5, pp. 385-388, 2005.         

[17] S. C. Pei and J. J. Ding, “Reversible Integer Color Transform with Bit-Constraint”, International Conference on Image Processing, vol. 3, pp. 964-967, 2005. 

[18] S. C. Pei and J. J. Ding, “New Corner Detection Algorithm by Tangent and Vertical Axes and Case Table”, International Conference on Image Processing, vol. 1, pp. 365-368, 2005.     

[19] J. J. Ding and S. C. Pei, “Fractional Fourier transforms and Wigner distribution functions for stationary and non-stationary random process”, vol. 3, pp. 21-24, ICASSP, May 2006.   

[20] S. C. Pei and J. J. Ding, “Improved reversible integer transform”, pp. 1091-1094, ISCAS, May 2006.  

[21] S. C. Pei and J. J. Ding, “Relations between Gabor transforms and fractional Fourier transforms and their applications for signal processing”, accepted by EUSIPCO 2006. 

[22] Y. C. Zeng, S. C. Pei and J. J. Ding, “DCT-based image protection using dual-domain bi-watermarking algorithm”, CIP, pp. 2581-2584, Oct. 2006.  

[23] Y. C. Zeng, S. C. Pei and J. J. Ding, “Color images enhancement using weighted histogram separation, ICIP, pp. 2889-2892, Oct. 2006.  

[24] S. C. Pei and J. J. Ding, “Scaled lifting scheme and generalized reversible integer transform,” ISCAS, pp. 3203-3206, May 2007.

[25] S. C. Pei and J. J. Ding, “Improved Harris’ algorithm for corner and edge detections,” accepted by ICIP 2007.  

[26] S. C. Pei and J. J. Ding, “Discrete-to-discrete prolate spheroidal wave functions and finite duration discrete fractional Fourier transform,” accepted by EUSIPCO 2007.    

[27] S. C. Pei and J. J. Ding, “Quaternions and biquaternions for symmetric Markov-chain system analysis,” accepted by EUSIPCO 2007.   

[28] J. J. Ding, S. C. Pei, G. C. Guo, J. D. Huang, Y. C. Lin, Y. S. Zhang, and N. C. Shen, “Images sharing the same amplitude spectrum but different phase key,” CVGIP, 2007.    

[29] J. J. Ding, S. C. Pei, J. D. Huang, G. C. Guo, Y. C. Lin, N. C. Shen, and Y. S. Zhang, “Short response Hilbert transform for edge detection,” CVGIP, 2007.

 

 

(C) Books

[1] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing (離散時間訊號處理), 2nd Ed., Prentice Hall, New Jersey, 1999, 曾建誠,陳常侃,王鵬華,丁建均翻譯,全華印行,台北市, 2000.

 

 

(D) Theses

[1] J. J. Ding, Derivation and Properties of Orthogonal Transform, Master Thesis, National Taiwan University, 1997.

[2] J. J. Ding, Research of Fractional Fourier Transform and Linear Canonical Transform, Doctoral Dissertation, National Taiwan University, 2001.    

 

 

 


Copyright © 2007 DISP Lab, Graduate Institute of Electrical Engineering, NTU
10617
臺北市羅斯福路四段一號 明達館531